摘要:我们报告了沉积在石墨烯上的 5,5′-双(萘-2-基)-2,2′-联噻吩 (NaT2) 薄膜的微观结构、形貌和生长,以掠入射 X 射线衍射 (GIXRD) 为特征,并辅以原子力显微镜 (AFM) 测量。NaT2 沉积在两种类型的石墨烯表面上:定制样品,其中我们将化学气相沉积 (CVD) 生长的石墨烯层转移到 Si/SiO 2 基底上,以及常见的商业转移 CVD 石墨烯到 Si/SiO 2 上。原始 Si/SiO 2 基底用作参考。NaT2 晶体结构和取向在很大程度上取决于下面的表面,分子主要位于石墨烯表面(面向取向),并在 Si/SiO 2 参考表面上几乎位于平面外(边缘取向)。生长后的 GIXRD 和 AFM 测量表明,晶体结构和晶粒形态会根据石墨烯表面是否有聚合物残留而有所不同。原位 GIXRD 测量表明,在沉积过程开始时,结晶边缘相的 (111) 反射强度的厚度依赖性不会与零相交,这表明在表面 - 薄膜界面处形成了对应于 1-2 个分子层的初始润湿层。相比之下,在整个沉积过程中,结晶正面相的 (111) 反射强度以恒定的速率作为薄膜厚度的函数增长。■ 简介
目前的工作提出了一种新颖的自动互联网(IoT)光谱传感系统,用于通过反射信号对葡萄成熟的现场光学监测。为此,开发,表征和操作在实验室和现场条件下量身定制的硬件。它包括三个互补模块:光学模块,主机模块和控制器模块。光学模块包括四个光电探测器和四个LED,最大发射波长为530、630、690和730 nm,它们与葡萄浆果直接接触。主机模块包括LED驱动程序和模拟前端,以获取信号。最后,控制器模块提供了对系统的完全控制,并确保数据存储,电源管理和连接性。该系统能够通过线性响应(R 2> 998)在4 - 100%的范围内测量反射率,并且在不同的光学单元之间具有很高的可重复性。这种设计使从红色收集反射信号成为可能(cv。Touriga Nacional)和白色(cv。Loureiro)实验室和现场环境中的葡萄品种。在整个成熟期(大约两个月)中,这种光学指纹(由不同的反射强度组成)与葡萄浆果质量参数的演变之间的关系进行了分析和讨论。实验室数据用于建立一个基于部分最小二乘正方形的多元模型,以预测两个品种中总可溶性固体(TSS)含量。ir)甚至荧光。模型误差(交叉验证中的均方根误差)分别为2.31和0.73°,Touriga Nacional和Loureiro分别为Brix。在系统实时预测TSS的潜力的说明性示例中,将该模型应用于在现场获取的数据。监测期内收集的现场观察结果还提供了有关光传感器无人值守操作期间可能发生的潜在问题的相关信息。此外,所提出的光学模块的模块化体系结构使使用不同的LED和光电视图以及光学过滤器的组装成为可能。这创造了使用相同原理在不同光谱范围内测量反射率的可能性(例如,本文所述的结果为这项技术的未来发展铺平了工作,其中包括基于反射数据的最相关的葡萄成熟参数的预测模型,以及作为无线传感器网络的一部分的操作。