可以特定于特定场景(或用例),但每个场景都可能需要一个新的制造过程。最终用户从一组简单的构建块中构建传感器的能力为更大的多功能性,设计灵活性和快速实现这些传感器提供了机会。离子液体(IL)是在环境温度下液体的有机盐,这些功能性溶剂作为柔性应变传感器的组成部分具有吸引力。1 - 3,5 - 7,9 - 15,26 - 29 ILS可以膨胀聚合物网络以形成离子液体凝胶(离子凝胶),11,30,31,可以与水养水凝胶具有许多相似性。7,8,10,16 IL凝胶的优势包括它们的内在离子电导率和疏忽大液的蒸气压,从而限制了溶剂蒸发。 IL的化学结构是高度可调的,并且可以使其在升高的温度下保持稳定,从而使离子传感器具有较大的操作温度范围。 32,337,8,10,16 IL凝胶的优势包括它们的内在离子电导率和疏忽大液的蒸气压,从而限制了溶剂蒸发。IL的化学结构是高度可调的,并且可以使其在升高的温度下保持稳定,从而使离子传感器具有较大的操作温度范围。32,33
摘要:一组新型的供体 - 受体donor(D-A-D)苯甲二唑衍生物已合成并在纳米晶体中结晶,以探索其化学结构与波导发光特性之间的相关性。的发现表明,所有晶体都表现出发光和主动的光学波形,这表明能够根据附着在苯甲酰甲二氮唑核的供体组中调节其在550–700 nm的宽光谱范围内。值得注意的是,每种化合物的同型能量间隙与相应光波导的颜色发射之间存在明显的关系。这些结果肯定了通过合适的化学功能化来修饰有机波导的颜色发射的可行性。重要的是,本研究标志着出于这种目的的苯甲酰基衍生物的首次利用,强调了这项研究的独创性。此外,纳米晶体的获得是实施微型光子设备的关键工具。
摘要:分散在液体和固体矩阵和发光粉末中的散射发光材料与基本研究和行业越来越相关。示例是各种矩阵中不同组合物的发光纳米和微粒以及磷酸盐,或在能量转换,固态照明,医学诊断和安全条形码的陶瓷中纳入陶瓷。表征这些材料性能的关键参数是光发光/荧光量子产率(φF),即每个吸收光子的发射光子的数量。为了识别和量化散射样品绝对测量的不确定性来源,通过以下相同的测量方案进行了实验室和行业的三个实验室的实验室间比较(ILC)。因此,使用两种类型的商业独立的集成球体设置,具有不同的照明和检测几何形状,用于测量透明和散射染料溶液和固体磷光剂的φf,即YAG:CE Optoceramics,用于不同的表面粗糙度,用作蓝光的转换材料,用作蓝光的转换材料。特别重点是测量几何形状的影响,用于确定样品吸收的入射激发光的光子数量以及样品特异性表面粗糙度的光子数量。虽然液体样品的φf值匹配仪器之间,但具有不同空白的光学辅酶的测量结果显示出实质性差异。■简介ILC结果强调了测量几何形状,样品位置和空白的重要性,以用于散射YAG的可靠数据:CE OptoCeramics,空白的光学特性占不确定性超过20%的不确定性。
摘要:热发光剂量计(TLD)由于其出色的特性,例如高灵敏度,小尺寸和测量低剂量的辐射剂量,因此广泛用于辐射剂量测定法。本综述着重于TLD材料的结构特性及其制备,应用和适应性。评论涵盖了各种类型的TLD材料,晶体结构和特性,包括能量响应和褪色特征。详细讨论了用于制备TLD材料的不同方法,例如固态合成,溶胶 - 凝胶合成和溶液生长方法。审查还包括对TLD的各种应用,包括医疗,环境和工业辐射剂量法的详细讨论。审查了有关TLD的广泛信息,并且可以使用天然和人工TL信号来完成对人类和其他目的利用率的TL剂量测定潜力的明显影响,例如矿物质,石油和天然气资源调查。有关TL测量过程需求和对复合TL剂量测定潜力显着影响的TL特征的信息。最后,审查结束了结论,以强调TLD材料对不同剂量测定应用的适应性及其将来的潜在用途。doi:https://dx.doi.org/10.4314/jasem.v28i4.13 Open Access策略:Jasem发表的所有文章都是Open-Access文章,可以免费下载,复制,复制,重新分发,重新分发,重新分发,翻译,翻译和阅读。版权策略:©2024。(2024)。J. Appl。SCI。SCI。作者保留了版权和授予JASEM的首次出版物的权利,同时在创意共享署名4.0 International(CC-By-4.0)许可下获得许可。,只要引用了原始文章,就可以在未经许可的情况下重复使用本文的任何部分。将本文列为:Efenji,G。I; Iskandar,S。M; Yusof,N。N; Rabba,J。a; Mustapha,O。I; Fadhirul,I。M; Umar,S。A; Kamgba,F。A; Ushie,P。O; Munirah,J; Thair,H。K; Nabasu,S。E; Hayder,S。NOke,A O.热发光剂量材料,制备,应用和适应性的结构特性:系统评价。环境。管理。28(4)1129- 1150日期:收到:2024年1月22日;修订:2024年2月29日;接受:2024年3月23日发布:2024年4月29日关键字:剂量计;荷兰物理学家Nicolas Steno在1663年首次观察到辐射,热发光,热发光应用,他们注意到
可耐醚电解质和高反应性锂金属阳极仍然限制了Li - S电池的商业应用。在LI - S细胞系统中,最常用的电解质溶剂是醚溶剂,例如二甲氧基乙烷(DME)和1,3-二氧烷(DOL),它们具有非常低的灰点(对于DME 6和1°C,DME 6和1°C的DOL 7)和高挥发性。这些醚电解质溶剂的这些特征确定使用Li - S细胞有很大的安全风险。对于反应性锂金属阳极,它可以很容易地与Li - S细胞中的基于醚的电解质和可溶性中间产物 - des des反应,并立即形成锂金属阳极表面上的固体电解质相(SEI)层。8不幸的是,SEI层倾向于不稳定和脆弱,这会导致严重的不可逆转能力降解。更平均,锂阳极的非均匀电化学溶解/沉积将导致锂树突的形成,这可以穿透分离器并引起严重的安全危害。为了解决上述问题,已经在更安全的电解质上为LI - S电池(例如固体电解质,离子液体,高浓度电解质,uorated溶剂和AME阻燃剂)进行了大量出色的工作。尽管这些作品取得了出色的改进,但它们也具有明显的缺陷,例如界面兼容性差和复杂的制备过程(固体电解质),9
图2带电荷中性尖端的ZLL的点光谱。(a)栅极可调sts的假颜色图显示-2 <𝜈 <2填充范围中的ZLL激发光谱,箭头指向-2 <𝜈 <-1(b)缩放光谱近2/3 = -2/3中的haldane sash特征。使用GAP的门范围测量FQH间隙。虚线跟踪A | DVG/DE | = 1个斜率在y轴上移动以与数据对齐。(c)图显示了绿色中STS DAT中的峰位置以及隧道间隙(δT),热力学间隙(δ)和库仑间隙(δC)之间的关系。(d)单个风味量子霍尔系统的精确对角线计算获得的状态密度。(e)(d)的linecuts在选定的填充物处显示光谱(F)使用Lorentzian拟合的电子激发峰提取的间隙,从而形成-2 <𝜈 <-1范围(蓝色)和-1 <𝜈 <0范围(红色)中的Haldane Sash特征。从精确的对角度模拟中提取的类似差距以灰色显示。(g)(a)的linecuts,在恒定填充处显示光谱特征,以与理论(d)进行比较。
mgn 2 o 6·6H 2 o,NH 4 H 2 PO 4,Zrocl2Å8H2 O,ER(NO 3)3Å5H2 O,150 ml Deathis Water,Zroc l2·8H 2 O水溶液
抽象发光构成了对金属热载体过程的独特洞察力,包括用于传感和能量应用的等离子纳米结构中的载体过程。然而,金属发光本质上是弱的,其微观起源仍然存在很广泛的争论,并且它的纳米级载体动力学的潜力在很大程度上无法解释。在这里,我们揭示了从薄单晶金质量产生的发光中的量子力学效应。特别是,我们提供了第一个原理模拟支持的实验证据,以证明其光致发光的起源(即,在互面板中令人兴奋时,会从电子/孔重组中产生的辐射发射)。我们的模型使我们能够确定由于量子机械效应而导致的测得的金发光的变化,因为金纤维厚度降低。令人兴奋的是,这种效应在厚度高达40 nm的发光信号中可观察到,这与费米水平附近电子带结构的平面离散性有关。我们通过第一个原理建模来定性地重现观测值,从而确立了在金单晶型中的发光统一描述,并将其广泛的应用作为携带者的探针,以探测本材料中的载体动力学和光 - 摩擦相互作用。我们的研究为在众多材料系统中的热载体和电荷转移动力学的未来探索铺平了道路。
图2。y 3+x al 5-x o 12(0≤x≤0.4)的结构演变得出了SXRD数据的分析。(a)Y 3.4 Al 4.6 O 12(R WP = 8.79%,χ= 1.16)的Rietveld细化具有高角度拟合插图的变焦。Blue tick marks indicate garnet reflections (99.77(2) wt.%), green tick marks indicate perovskite reflections (YAlO 3 , 0.33(2) wt.%) (b) The garnet structure of Y 3.4 Al 4.6 O 12 projected along (100), and a fragment projected along (111) showing the three different cation environments (orange atoms = Y 3+ ; dark blue octahedra = Alo 6;浅蓝色四面体= ALO 4)。(c)具有线性拟合覆盖(实线)的精制晶格参数A,并通过y 3+对16个位点的精制占用率,名义占用覆盖(虚线)。(d)在三种不同的阳离子环境中精制的金属氧距离(m-o)x,在y 3 al 5 o 12(m- o)0时标准化为其值。蓝色三角形=直接结晶样品;洋红色倒三角=玻璃结晶样品。错误栏对应于细化中的10x ESD。
如果要合理设计高效、明亮的发射技术,理解“效率滚降”(即发射效率随电流增加而下降)至关重要。新兴的发光电化学电池 (LEC) 可以通过环境空气打印以成本和能源高效的方式制造,这得益于 pn 结掺杂结构的原位形成。然而,这种原位掺杂转变给有意义的效率分析带来了挑战。本文介绍了一种分离和量化主要 LEC 损耗因素(特别是出耦合效率和激子猝灭)的方法。具体而言,测得常见单线态激子发射 LEC 中发射 pn 结的位置随电流的增加而显著移动,并量化这种移动对外耦合效率的影响。进一步验证了 LEC 特有的高电化学掺杂浓度在低驱动电流密度下就已经使单重态极化子猝灭 (SPQ) 变得显著,而且由于 pn 结区域中极化子密度的增加,SPQ 还会随着电流的增加而超线性增加。这导致 SPQ 在相关电流密度下主导单重态-单重态猝灭,并且显著有助于效率下降。这种解释 LEC 效率下降的方法有助于合理实现在高亮度下高效的全印刷 LEC 设备。