yttrium硼酸盐用欧洲离子掺杂,通过在900 o C的消气炉中的固态合成制备4小时,而在消音炉中,在1000 o C再次制备了1000 o C的兰田和铝制硼酸盐。所产生的材料是细的白色粉末。在稀土离子中,Europium是最常用的激活剂之一,因为EU 3+和EU 2+的离子可以用作宿主晶格中的发射位点。EU 3+离子可以在不同基质组成中产生有效的尖锐发射峰。 进行样品的光致发光分析,基于通过比较特征确定EU 3+离子的发光强度。 YBO 3:EU 3+磷光是光学活跃的,化学稳定。 它的特征是由于5 d 0→7 f 1和5 d 0→7 f 2电子跃迁,在≈591nm,≈612和≈696nm处有强橙红色发射。 在≈592和≈615nm处的labo 3:eu 3+也观察到了红色发射,表征了5 d 0→7 f 1和5 d 0→7 F J(j = 0,1,2,3,4)的过渡。 虽然用欧洲离子掺杂的铝制硼酸盐在≈612nm处显示出强烈的发射,因此该材料适用于照明设备。 使用傅立叶变换红外光谱(FTIR)的技术来研究获得的材料的结构。EU 3+离子可以在不同基质组成中产生有效的尖锐发射峰。光致发光分析,基于通过比较特征确定EU 3+离子的发光强度。YBO 3:EU 3+磷光是光学活跃的,化学稳定。它的特征是由于5 d 0→7 f 1和5 d 0→7 f 2电子跃迁,在≈591nm,≈612和≈696nm处有强橙红色发射。在≈592和≈615nm处的labo 3:eu 3+也观察到了红色发射,表征了5 d 0→7 f 1和5 d 0→7 F J(j = 0,1,2,3,4)的过渡。虽然用欧洲离子掺杂的铝制硼酸盐在≈612nm处显示出强烈的发射,因此该材料适用于照明设备。使用傅立叶变换红外光谱(FTIR)的技术来研究获得的材料的结构。
Yb 3+ /Er 3+ 共掺杂上转换材料广泛用于发光强度比 (LIR) 测温,其中 Er 3+ 掺杂离子的绿色发光跃迁 ( 2 H 11/2 → 4 I 15/2 和 4 S 3/2 → 4 I 15/2 ) 的相对强度比随温度而变化。在本文中,我们报告了从 2 H 9/2 能级到中间 4 I 13/2 能级的额外跃迁的影响,该跃迁与通常用于 LIR 测温的绿色发光重叠。2 H 9/2 → 4 I 13/2 发射与 4 S 3/2 → 4 I 15/2 发射大量重叠,并且对泵浦功率更敏感。为了获得准确的温度读数,需要仔细选择用于积分 2 H 11/2 → 4 I 15/2 和 4 S 3/2 → 4 I 15/2 发光的波长间隔。
Yb 3+ /Er 3+ 共掺杂上转换材料广泛用于发光强度比 (LIR) 测温,其中 Er 3+ 掺杂离子的绿色发光跃迁 ( 2 H 11/2 → 4 I 15/2 和 4 S 3/2 → 4 I 15/2 ) 的相对强度比随温度而变化。在本文中,我们报告了从 2 H 9/2 能级到中间 4 I 13/2 能级的额外跃迁的影响,该跃迁与通常用于 LIR 测温的绿色发光重叠。2 H 9/2 → 4 I 13/2 发射与 4 S 3/2 → 4 I 15/2 发射大量重叠,并且对泵浦功率更敏感。为了获得准确的温度读数,需要仔细选择用于积分 2 H 11/2 → 4 I 15/2 和 4 S 3/2 → 4 I 15/2 发光的波长间隔。
(ii) 米:一米是光在 1/299792458 秒的时间间隔内在真空中行进的距离。 (iii) 秒:一秒是铯-133 原子经历 9192631770 次振动所需的时间。 (iv) 开尔文:一开尔文等于水的临界点热力学温度的 1/273.15。 (v) 安培:一安培是当电流流过两根长平行导线时,每根导线的长度等于一米,在自由空间中相隔一米,两根导线之间会产生 2×10 7 N 的力。 (vi) 坎德拉:一坎德拉是光源在给定方向上的发光强度,该光源发射频率为 540 × 10 12 Hz 的单色辐射,其辐射强度为每立体角 1/683 瓦。 (vii) 摩尔:一摩尔是任何物质的量,其所含的基本单位可能与 0.012 千克 C-12 碳同位素中的原子数相同。
我们报告了通过二维半导体WS 2的范德华异质结构的能量转移机理和具有不同层间距离的石墨烯,这是通过六角硼硝化硼(HBN)的间隔层实现的。我们在0.5 nm至5.8 nm(0-16 HBN层)之间记录了层间距离处的光致发光和反射光谱。我们发现能量转移由光锥外部的状态支配,这表明了f的转移过程,并在0.5 nm的层间距离下右手过程的额外贡献。我们发现,可以使用最近报道的热载荷载载流子的f ister传递速率进行定量描述发光强度对层间距离的测量依赖性。在较小的层间距离处,实验观察到的转移速率超过了预测,此外,取决于过量的能量以及激发密度。由于f”机制的转移概率取决于电子孔对的动量,因此我们得出结论,在这些距离上,转移是由非省力的荷载载流子分布驱动的。
摘要——采用 CMOS 工艺实现的硅光子学已经改变了计算、通信、传感和成像领域。尽管硅是一种间接带隙材料,阻碍了高效发光,但在高压反向击穿雪崩模式下工作时在发射宽带可见光的硅 pn 结领域已经进行了大量研究。在这里,我们展示了在开放式代工厂微电子 CMOS 工艺 55BCDLite 中实现的正向偏置硅微发光二极管 (micro-LED) 的高亮度近红外 (NIR) 光发射,无需任何修改。在室温连续波操作下,对于直径为 4 µ m 的器件,在低于 2.5 V 的电压下,在中心波长为 1020 nm 处实现了超过 40 mW/cm 2 的外部发光强度。这是通过采用具有保护环设计的深垂直结来实现的,以确保载流子传输远离器件表面和非辐射复合通常占主导地位的材料界面。在这里,我们还展示了仅使用标准多模光纤和单片集成 CMOS 微型 LED 和探测器的完整芯片到芯片通信链路。
带电粒子诱导的cspbbr 3(CPB)perovskite量子点(QD)的辐射发光(RL)。用光电倍增管(PMT)与脉冲数字技术相结合分析了RL响应,从而可以评估单个A辐射事件的时间分辨波形。发现电脉冲的上升和衰减过渡时间非常接近仪器限制,而比常规无机闪烁体中通常测得的数量级要短。基于对时序特征的统计分析,我们的研究评估了在使用CSI(TL)闪烁体进行比较测量中证明的钙钛矿纳米材料的潜力。将脉冲电荷的分布转换为发光强度,并用蒙特卡洛模拟拟合,估计RL产量为2.95个光子/KEV,而检测效率(DE)的估计值为29.2%,指的是我们的平均簇厚度为5 QD层。2021作者。由Elsevier B.V.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
左手和右圆形发光(CPL)1,2的材料对于丰富的应用程序,例如3D光学显示,3,4个信息存储和处理,5,6个光电设备,7-9和光学安全标签非常有用。10到目前为止,生产具有高度对称因子(G LUM)的CPL仍然是一个重大挑战,这主要是由于在排放过程中具有较大的磁性偶极矩和相对较小的电动偶极矩的系统罕见。只有少数类小的手性有机痣,8,11,12个,例如paracyclophanes,13,14架直升机15-25和Binol衍生物,26-30可以产生相对较高的CPL的明显CPL | g lum |在10 -3〜10 -2的范围内。几种类型的手性灯笼 - 丛 - 丛具有更大的| g lum | (0.05至1.38)由于独特的内部形象f- f跃迁而导致laporte-forbdide并显示出较大的旋转强度。31–33然而,由于其低发光强度以及分子设计和合成的困难,这些灯笼材料的应用通常受到限制。
SI 基本单位是国际单位制 (SI) 为现行国际数量体系的七个基本量规定的标准化测量单位:它们是一组基本单位,我们可以从中推导出所有其他 SI 单位。这些是 SI 单位。秒用于测量时间,米用于测量长度或距离,千克用于测量质量,安培用于测量电流,开尔文用于测量热力学温度,摩尔用于测量物质的数量,坎德拉用于测量发光强度。除时间外,其他所有基本 SI 单位都可以量化或被 5 种基本感觉受体(即眼睛、鼻子、耳朵、皮肤和舌头)感受到。我们可以用脚步测量距离,通过皮肤感受到温度的上升。时间是唯一缺乏其存在的经验证据的基本现象。然而,在物理学中,它被视为距离变化率的度量。 许多人认为时间只是测量宇宙熵的工具。衡量不可预测性的程度是用熵来衡量的。它表示系统内部混乱程度的增加。根据热力学第二定律,任何自发发生的事件都会增加宇宙的熵 (S)。该定律断言,孤立系统的熵永远不会随着时间的推移而减少。
2化学系,数学和自然科学学院,安达拉斯大学,印度尼西亚帕登,电子邮件:syukriarief@sci.unand.ac.id(2023年2月2日收到; 2024年2月13日修订; 2024年2月13日; 2024年4月3日接受)。 摘要:重新沉淀技术已成功创建了氧化铁(Fe 3 O 4)纳米颗粒。 然后用发光材料(即碳圆点(CD))对Fe 3 O 4纳米颗粒的表面进行修饰。 CD使用简单的加热方法从干香蕉叶合成。 然后,使用单锅和两锅合成的热液方法合成Fe 3 O 4 @CDS纳米复合材料。 CD在可见光下是透明的,在紫外线照明下看起来蓝色和绿色。 使用光致发光(PL)分光光度计表征CD和Fe 3 O 4 @CDS纳米复合材料的光致发光特性。 fe 3 O 4 @CD使用单盘技术合成具有一个发射带,可向更长的波长或“红移”拓宽。 相比之下,使用两盘技术合成的Fe 3 O 4 @CD具有比纯CD的发光强度更高。 透射电子显微镜(TEM)图像显示了Fe 3 O 4 @CDS纳米复合材料的核心壳结构。 振动样品磁力测定法(VSM)结果表明,纳米复合材料具有22.3 EMU/G的饱和磁化强度,并且具有85.41 OE的固化场。 Fe 3 O 4 @CDS纳米复合材料中的官能团是Fe-O键,表明Fe 3 O 4的形成,而O-H和C = O键表示CD的形成。 关键字:纳米复合材料,磁性材料,生物相容性,碳点2化学系,数学和自然科学学院,安达拉斯大学,印度尼西亚帕登,电子邮件:syukriarief@sci.unand.ac.id(2023年2月2日收到; 2024年2月13日修订; 2024年2月13日; 2024年4月3日接受)。摘要:重新沉淀技术已成功创建了氧化铁(Fe 3 O 4)纳米颗粒。然后用发光材料(即碳圆点(CD))对Fe 3 O 4纳米颗粒的表面进行修饰。CD使用简单的加热方法从干香蕉叶合成。然后,使用单锅和两锅合成的热液方法合成Fe 3 O 4 @CDS纳米复合材料。CD在可见光下是透明的,在紫外线照明下看起来蓝色和绿色。使用光致发光(PL)分光光度计表征CD和Fe 3 O 4 @CDS纳米复合材料的光致发光特性。fe 3 O 4 @CD使用单盘技术合成具有一个发射带,可向更长的波长或“红移”拓宽。相比之下,使用两盘技术合成的Fe 3 O 4 @CD具有比纯CD的发光强度更高。透射电子显微镜(TEM)图像显示了Fe 3 O 4 @CDS纳米复合材料的核心壳结构。振动样品磁力测定法(VSM)结果表明,纳米复合材料具有22.3 EMU/G的饱和磁化强度,并且具有85.41 OE的固化场。Fe 3 O 4 @CDS纳米复合材料中的官能团是Fe-O键,表明Fe 3 O 4的形成,而O-H和C = O键表示CD的形成。关键字:纳米复合材料,磁性材料,生物相容性,碳点基于光学和磁性表征,可以得出结论,可以为生物医学应用(例如生物成像材料)开发该材料。