致癌性:该产品的任何组件都没有可用的信息高于或等于0.1%,这被归类为可能的,可能的,可能或由国际癌症研究机构(IARC)归类为可能的人类致癌物。诱变性:该产品没有组成部分,其浓度大于或等于0.1%,根据SGH,它们被归类为诱变。tox。ret。:该产品的组成部分没有大于或等于0.1%的浓度,根据SGH,它们归类为繁殖危险。致病性:该产品的组成部分没有大于或等于0.1%的浓度,根据SGH,它们被归类为致畸性。stot-se:根据SGH,该产品的浓度大于或等于1%,其浓度大于或等于1%,其浓度为1%,根据SGH为毒性。stot-re:该产品没有组成部分,其浓度大于或等于1%,根据SGH将其分类为有毒靶器官。抽吸:该产品的浓度不高于或等于10%,根据SGH,对吸气性有毒。
高质量的复合材料在太空应用中已经使用了几十年,主要用于载人航天器、卫星结构和航天运载火箭。它们在运载火箭中有着广泛的应用,例如固体火箭发动机和燃料和气体压力容器。许多复合材料用作重返大气层的车辆的热保护系统。碳纤维复合材料通常用于卫星结构及其有效载荷系统。1 卫星的总线结构由铝蜂窝芯和复合材料蒙皮制成。其他需要尺寸稳定性的结构由增强复合材料制成。图 1 描述了复合材料在先进空间结构中的应用示例,以及如何确定它们在受到超高速碎片影响时的性能。这些复合材料有助于在太空极端温度下保持极端尺寸稳定性。2 对更大复合结构的需求促使开发高质量的复合结构,这些结构可以用更少的接头制造这些组件,从而增加使用复合结构的好处。3
认证................................................................................................................................................ii
用于卫星和太空探测器的陀螺仪: • Astrix 系列:用于军事、科学和电信应用的高性能空间光纤陀螺仪,与空中客车防务与航天公司合作开发了 20 多年 • Astrix NS:用于新空间的新型、紧凑且具有竞争力的陀螺仪 发射器的惯性导航系统: • 用于阿丽亚娜发射器的安全惯性导航系统。自 2020 年以来已在飞行中通过认证 用于空间应用的 LiNbO 3 光调制器 • 用于从卫星到卫星、从太空到地面的激光通信终端的幅度和相位 LiNbO 3 调制器 • 用于激光腔稳定的相位 LiNbO 3 调制器 空间级光纤 • 具有多种涂层选择的 SM 和 PM 辐射硬化光纤 • 用于光源和放大器的掺铒和掺铒/镱光纤 • 定制设计的空间级光纤以及光纤光源和放大器
电喷雾离子束中发射物质的角度分布尚未得到很好的表征,并且会对推进性能和发射器寿命产生负面影响。我们使用飞行时间质谱法对单个电喷雾离子束中发射物质的角度分布与发射电压的关系进行了实验表征。角电流分布表明发射中心轴与发射器尖端中心轴的最大偏差为 10 ◦。离子物质随角度的变化取决于发射电压。单粒子轨迹的模拟表明,离子团簇的碎裂会导致离子产物移近光束中心,而中性产物扩散至 47 ◦,具体取决于碎裂发生的速度。将实验结果与电喷雾发射的多尺度全光束模拟进行了比较,并讨论了未来使用这些模拟来解释角光束行为。
电喷雾离子束中发射物质的角度分布尚未得到很好的表征,并且会对推进性能和发射器寿命产生负面影响。我们使用飞行时间质谱法对单个电喷雾离子束中发射物质的角度分布与发射电压的关系进行了实验表征。角电流分布表明发射中心轴与发射器尖端中心轴的最大偏差为 10 ◦。离子物质随角度的变化取决于发射电压。单粒子轨迹的模拟表明,离子团簇的碎裂会导致离子产物移近光束中心,而中性产物扩散至 47 ◦,具体取决于碎裂发生的速度。将实验结果与电喷雾发射的多尺度全光束模拟进行了比较,并讨论了未来使用这些模拟来解释角光束行为。
量子发射器已成为基本科学和新兴技术的重要工具。近年来,12 eld的重点已转移到探索和识别新的量子系统,该系统由原子上薄的二维材料的新兴库启用。在这篇综述中,我们强调了2D系统中量子发射器工程技术的当前状态,重点是过渡金属二烷核化合物(TMDCS)和六角形氮化物。我们首先要回顾TMDC的进度,重点是发射机工程,调整其光谱特性以及观察层间激子的能力。然后,我们讨论HBN中的发射器,并专注于发射器的起源,工程和新兴现象 - 跨越超分辨率成像和光学自旋读数。我们通过讨论在具有等离子和介电光子腔的2D宿主中整合发射器的实践进步,并由量子光 - 形式相互作用支撑。我们结束了实践芯片量子光子应用的途径,并在这项研究中强调了挑战和机遇。
纳米制造技术的最新进展使得人们能够制造出具有纳米级自由空间间隙的真空电子器件。这些纳米电子器件具有冷场发射和通过自由空间传输的优势,例如高非线性和对温度和电离辐射的相对不敏感性,同时大大减少了占用空间,增加了工作带宽并降低了每个器件的功耗。此外,平面真空纳米电子器件可以很容易地以类似于典型的微纳米级半导体电子器件的规模进行集成。然而,这些器件中不同电子发射机制之间的相互作用尚不清楚,其他人已经注意到它们与纯 Fowler-Nordheim 发射不一致。在这项工作中,我们系统地研究了平面真空纳米二极管的电流-电压特性,这些二极管的曲率半径为几纳米,发射极和集电极之间有自由空间间隙。通过研究由两种不同材料制成的几乎相同的二极管在不同环境条件(如温度和大气压)下的电流-电压特性,我们能够清楚地分离出单个器件中的三种不同发射模式:肖特基、福勒-诺德海姆和饱和。我们的工作将实现对真空纳米电子器件的稳健而准确的建模,这对于需要能够在极端条件下运行的高速、低功耗电子器件的未来应用至关重要。
摘要:由于存在强烈的失相过程,基于半导体量子点 (QD) 平台的单光子源 (SPS) 仅限于低温 (T) 操作。尽管 QD 在光腔中的集成可以增强其发射特性,但在高 T 下保持高不可区分性 (I) 的技术要求仍然超出了当前技术水平。最近,新的理论方法通过实现双偶极耦合发射系统已经显示出有希望的结果。在这里,我们提出了一个基于优化的五偶极耦合发射系统平台,该系统耦合到腔体,可在高 T 下实现完美的 I。在我们的方案中,使用完善的光子平台可以实现具有耗散 QD 的完美 I 单光子发射。对于优化过程,我们开发了一种新颖的机器学习方法,该方法可以显着减少高要求优化算法的计算时间。我们的策略为优化不同光子结构用于量子信息应用开辟了有趣的可能性,例如减少耦合的两级量子系统簇中的量子退相干。