在线存放在白玫瑰研究中的重用项目受版权保护,除非另有说明,否则保留所有权利。可以下载和/或印刷供私人学习,或者按照国家版权法所允许的其他行为。发布者或其他权利持有人可以允许进一步复制和重新使用全文版本。这是通过该项目的白玫瑰研究在线记录的许可信息来指示的。
摘要 - 净宽带(UWB)应用程序需要低功率和低噪声放大器(LNA),这些放大器(LNA)可以在较大的频率范围内运行。但是,传统的LNA通常会遭受线性不良和高功率消耗的困扰。这项研究工作提出了一种新型的LNA设计,该设计使用调整后的衍生化叠加(DS)技术和反馈来提高线性性并减少UWB LNA的功耗。DS技术通过调节晶体管的偏置电流来增强取消三阶相位调节(IM3),而反馈则改善了LNA的稳定性和输入匹配。使用180 nm标准CMOS技术中使用退化的通用源拓扑实现LNA。模拟结果表明,LNA的功率增益为10–12.2 dB,输入三阶截距点(IIP3)约为12 dbm,而在3.1-10.6 GHz的UWB频带上的噪声图小于2.5 dB。输入反射系数小于-10 dB,功耗为11.6兆瓦,电源为1.5 V。设计的LNA为UWB应用提供了一种新颖的创新解决方案,可显着提高UWB LNA的性能和效率,同时降低实施的成本和复杂性。
大学,甘托克,锡金 电子邮件:love.mittal@mangalayatan.edu.in 摘要:量子计算由量子比特(qubits)的非凡特性——叠加和纠缠推动,正处于技术革命的风口浪尖。叠加允许量子比特同时存在于多种状态,从而加速密码学、药物发现、优化、材料科学和人工智能中的问题解决。像 Shor 和 Grover 这样的量子算法有望颠覆传统加密并改变数据分析。纠缠是一种神秘的量子连接,它增强了量子通信和纠错,同时提供了安全的量子隐形传态。然而,量子计算面临着量子比特稳定性、扩展、纠错和量子软件开发等关键挑战。随着量子技术的进步,它有望重塑行业和社会,应对气候建模、能源、金融和物流等领域的挑战。前进的道路需要合作、道德考虑和对负责任发展的承诺。在这个量子时代,未来是量子的,充满创新、安全和变革性的计算能力。关键词:量子计算、量子比特、叠加、纠缠、量子算法 1. 简介:
这个思想实验有电磁和引力两种版本;讨论适用于其中一种或两种。在时间 t = 0 之前,爱丽丝开始用自旋在 x 方向的粒子,并将其送入施特恩-格拉赫装置,从而将其置于自旋“向上”和自旋“向下”各 50%-50% 的叠加态中。在 t = 0 之前,鲍勃将他的粒子放在一个陷阱中。从时间 t = 0 开始,爱丽丝将她的粒子送入“逆向施特恩-格拉赫装置”,并确定其相干性(例如,通过测量其 x 自旋)。在时间 t = 0 时,鲍勃从陷阱中释放他的粒子,并试图通过测量爱丽丝粒子的库仑/牛顿场强度来获取爱丽丝粒子的“哪条路径”信息。如果爱丽丝和鲍勃在彼此光程时间内完成测量,爱丽丝的叠加态会保持相干性吗?
摘要 — 随着可变可再生能源在电力结构中的份额不断增加,需要新的解决方案来构建灵活可靠的电网。电池存储系统的能源套利通过转移需求和提高电力生产系统的整体利用率来支持可再生能源融入电网。在本文中,我们提出了一种用于日前市场能源套利的混合整数线性规划模型,该模型考虑了希望从其存储资产中获得额外收入来源的资产所有者的运营和可用性约束。该方法以最佳方式安排与最有利可图的交易策略相关的充电和放电操作,并使用包括德国、法国、意大利、丹麦和西班牙在内的多个欧洲国家的电价,在一年的时间范围内实现了最高可获得利润的 80% 至 90%。
近来,量子计算的算法和生成的量子计算机技术不断发展。另一方面,机器学习已成为解决计算机视觉、自然语言处理、预测和分类等许多问题的重要方法。量子机器学习是一个结合这两种主要方法的优点而发展起来的新领域。作为量子和经典计算的混合方法,变分量子电路是一种机器学习的形式,它可以根据输入变量预测输出值。在本研究中,当数据集较小时,使用变分量子电路模型研究了叠加和纠缠对天气预报的影响。在变分层之间使用纠缠层对电路性能进行了显着的改善。在数据编码层之前使用叠加层可以减少变分层的使用。
摘要 虽然理论上可以利用狭义相对论实现向前的时间旅行,但许多物理学家认为向后的时间旅行是不可能的,因为它需要超光速、虚质量、奇异质量和/或无限长的蒂普勒圆柱,这些概念要么无法实现,要么具有高度推测性。尽管没有禁止向后时间旅行的基本定律,但这种时间旅行会破坏因果关系并导致悖论。这可以用简单的祖父悖论来证明。祖父悖论可以通过量子力学的多重世界诠释来解决,即通过隔离事件发生的世界,而不会破坏因果关系。然而,这个解决方案忽略了叠加原理,允许波函数之间的相互作用。为了使向后时间旅行与多重世界诠释兼容,薛定谔方程必须是非线性的,这与诠释本身的假设相矛盾。
b"摘要:Dicke 态是具有汉明权重 k 的 n 个量子比特的叠加,表示为 | D nk \xe2\x9f\xa9 。Dicke 态经常用于为量子搜索算法(例如,Grover 搜索和量子行走)准备输入叠加,这些算法解决具有一定数量 nk 个候选解的组合问题。B\xc2\xa8artschi 和 Eidenbenz 提出了一种具体的量子电路,用于使用多项式量子门构造 Dicke 态 | D nk \xe2\x9f\xa9,并且他们根据汉明权重 k 对该电路进行了推广,以准备 Dicke 态的叠加。随后,Esser 等人提出了另一种量子电路,用于使用多项式门和一些辅助量子比特生成 Dicke 态 | D nk \xe2\x9f\xa9。在本文中,我们推广了 Esser 的状态准备电路以构造一个Dicke 态的叠加。我们对两个广义 Dicke 态准备电路进行了具体的比较。我们使用来自 IBM 量子体验服务 (IBMQ) 的真实量子机器进行噪声模拟和实验。这两个电路都使用噪声中尺度量子 (NISQ) 设备成功构建了广义 Dicke 态叠加,尽管受到噪声的影响。”
寻找一个将广义相对论和量子理论融为一体的理论框架已被证明是物理学中最困难的任务之一。这一追求背后的一个普遍假设是引力本身必须具有量子性质。事实上,有人从多个角度反对以量子方式处理物质场而以经典方式处理引力的方案 [1, 2]。然而,这些论点被发现没有预想的那么令人信服(例如,参见 [3, 4, 5])。很明显,关于引力基本性质的最终裁决必须以量子理论和引力都发挥重要作用的情况下的实验证据为基础。标准预期是,这种情况只会出现在涉及极高能量的现象中,或者当曲率值接近普朗克尺度(即 R ∼ 1 /m 2 p)时——这两种情况目前都远远超出了我们的经验范围。然而,最近有提案在桌面实验中寻找引力的可能量子行为,[6, 7]。与此同时,也有提案提出,通过探索涉及与需要量子力学处理的状态下的物质源相关的引力场的思想实验,可能会获得有用的提示,[8, 9]。后一种方法的具体实例已在 [10, 11, 12] 中进行了详细探讨。所考虑的思想实验涉及两个观察者:一个控制放置在两个空间位置的量子叠加中的粒子,另一个决定是否允许第二个粒子对其与第一个粒子的(电磁或引力)相互作用作出反应。这种设置使得粒子之间的相互作用似乎会阻止
我们讨论了与耗散环境耦合的多态系统随时间演化的约化密度矩阵 (RDM) 的一般特征。我们表明,通过相干图,即系统站点方格上 RDM 实部和虚部的快照,可以有效且透明地可视化动态的许多重要方面。特别是,相干图的扩展、符号和形状共同表征了系统的状态、动态的性质以及平衡状态。系统的拓扑结构很容易反映在其相干图中。行和列显示量子叠加的组成,它们的填充表示幸存相干的程度。虚 RDM 元素的线性组合指定瞬时群体导数。主对角线包含动力学的非相干分量,而上/下三角区域产生相干贡献,从而增加 RDM 的纯度。在开放系统中,相干图演变为围绕主对角线的带,其宽度随温度和耗散强度的增加而减小。我们用具有 Frenkel 激子耦合的 10 位模型分子聚集体的例子来说明这些行为,其中每个单体的电子态都耦合到谐波振动浴中。
