○ 模型 1:原始 InceptionV3 ○ 模型 2:冻结主体 + 自定义顶层 ○ 模型 3:自定义顶层 + 微调完整模型
此预印本版的版权持有人于2025年2月23日发布。 https://doi.org/10.1101/2025.02.19.639065 doi:Biorxiv Preprint
iSG20是IFN诱导的3 9 - 5 9 RNA外核酸酶,充当广泛的抗病毒因子。目前,将RNA暴露于ISG20的特征尚不清楚,尽管最近的研究表明,上映组的修饰在目标RNA对ISG20的敏感性中的调节作用。这些发现提出了一个问题,即这些修饰很丰富的细胞RNA如何应对ISG20。为了获得对该主题的无偏见,我们使用RNA-Seq和生化测定法确定调节RNA对ISG20行为的元素。RNA-SEQ分析不仅表明了细胞转录组的一般保存,而且还强调了组蛋白mRNA水平的小但可检测到的降低。与所有其他细胞蛋白的mRNA相反,组蛋白mRNA是未多烯基化的,并且在其3 9末端呈短茎 - 循环 - 促使我们检查了这些特征与ISG20降解之间的关系。我们获得的结果表明,RNA 3 9尾部上的poly(a)结合蛋白负载提供了针对ISG20的原始保护,很容易解释RNA-Seq观察到的细胞mRNA的总体保护。末端茎 - 循环RNA结构以前与ISG20保护有关。在这里,我们重新研究了这个问题,发现抗药性和对ISG20的敏感性之间的平衡取决于其治疗性稳定性。这些结果为调节ISG20的不同类别病毒的敏感性的复杂相互作用提供了新的启示。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年2月17日。 https://doi.org/10.1101/2025.02.12.12.637574 doi:Biorxiv Preprint
逆转录病毒可被先天免疫传感器环鸟苷酸环磷酸腺苷合酶 (cGAS) 检测到,该合酶可识别逆转录 DNA 并激活抗病毒反应。然而,HIV-1 保护其基因组免受 cGAS 识别的程度仍不清楚。为了详细研究这一过程的机制,我们在无细胞系统中重建了 HIV-1 的逆转录、基因组释放和先天免疫感应。我们发现,即使在完成逆转录后,野生型 HIV-1 衣壳也能保护病毒基因组免受 cGAS 的侵害。病毒 DNA 可能因热应激、衣壳突变或肌醇六磷酸 (IP6) 浓度降低而“脱保护”,这些因素会使衣壳不稳定。令人惊讶的是,衣壳抑制剂 lenacapavir 也会破坏病毒核心并显著增强 cGAS 活性,无论是在体外还是在细胞感染中。我们的研究结果提供了生化证据,表明 HIV-1 衣壳晶格隐藏了 cGAS 的基因组,而病毒核心的化学或物理破坏可以暴露 HIV-1 DNA 并激活先天免疫信号。
此预印本的版权所有者此版本于 2025 年 1 月 24 日发布。;https://doi.org/10.1101/2025.01.15.633097 doi:bioRxiv preprint
本病例讨论了一名 85 岁患者,该患者既往有白内障病史,导致右眼视力严重受损,并因右太阳穴基底细胞癌 (BCC) 及其局部复发而多次接受手术(2010 年局部广泛切除;2017 年再次切除并用皮肤移植重建),患者出现皮肤肿瘤进行性生长和扩散。检查后发现,表面有一块不规则的红斑,有多个溃疡(最大的一个位于左太阳穴,尺寸为 4×3 厘米)。病变从一个太阳穴延伸到另一个太阳穴,穿过前额,沿着手术皮肤移植的边缘,侵入左上眼睑,一个突出的肿块延伸出眼眶。对最大的溃疡进行皮肤活检显示为浸润性亚型基底细胞癌,并有骨质侵袭区域。鉴于临床情况困难、解剖位置复杂以及手术可能引起的并发症,经过全面评估后,患者被认为适合接受放射治疗。患者对治疗表现出良好的耐受性,局部治疗轻微放射性皮炎,并取得了令人满意的治疗反应。临床和放射学评估显示病变大小明显缩小,无明显毒性,左眼视力保留。本病例突出了姑息放射治疗在上面部复发性巨大基底细胞癌并侵袭到眼眶的患者中的成功应用,在手术或全身治疗不可行的情况下实现了视力保留。放射治疗正在成为具有挑战性的解剖位置复发性基底细胞癌的一种有价值的治疗选择。然而,仔细监测和严格的治疗计划对于实现良好结果并尽量减少副作用至关重要。
CIN是医院内获得性急性肾损伤的第三大病因(1)。在接受冠状动脉造影或经皮冠状动脉介入治疗的患者中,CIN的发生率高达20%~25%(1)。CIN通常定义为造影剂暴露后48~72小时内血清肌酐绝对升高0.5mg/dL或相对升高25%(2)。但建议在暴露后7天内出现急性肾衰竭也应考虑CIN(3)。但在糖尿病患者等高危人群中,发生率可增至50%(4,5)。糖尿病是CIN的独立危险因素。对于慢性肾脏病患者,每增加1倍基线肾小球滤过率,糖尿病的存在都会使发生CIN的风险增加一倍(6,7)。因此,迫切需要了解CIN的机制并制定有效的治疗策略。凋亡和自噬是重要的生物学过程,参与调控糖尿病肾病的发病机制(8-10)。凋亡在诱导肾细胞进行性丢失,导致肾小球硬化、肾小管萎缩和肾间质纤维化方面起着重要作用(11)。凋亡相关蛋白Bcl-2可能通过激活其下游通路介导细胞凋亡(12)。Caspase家族成员Caspase-3可以调控细胞凋亡过程(13)。自噬参与维持近端小管上皮细胞的稳定结构和功能(14)。作为哺乳动物细胞中常见的自噬体标志蛋白,LC3已被证实参与自噬的形成(15)。Beclin-1是酵母自噬基因Atg6/Vps30的同源基因,是自噬体形成的关键分子(15)。 AGE 是一种有害的蛋白质产物,在肾脏疾病患者中高度表达(16)。此外,AGE 是糖尿病微血管病变的主要原因。持续的 AGE 暴露通常会导致肾小管上皮细胞损伤(17)。我们之前的研究发现 CIN 糖尿病小鼠中 PKC β 2 表达较高,这表明 PKC β 2 可能参与糖尿病 CIN 的发病机制(18)。在这项研究中,我们发现沉默 PKC β 2 可减轻泛影葡胺和 AGE 诱导的 HK-2 细胞凋亡和自噬。这些发现提供了一个新的见解,即 PKC β 2 可能成为糖尿病患者 CIN 的新型药物。
Tdap 是什么?Tdap 代表破伤风、白喉和百日咳。破伤风可引起全身疼痛性肌肉痉挛,导致呼吸困难和死亡。白喉是一种严重的疾病,通常以喉咙痛开始,并可能迅速发展为呼吸问题。它还会损害心脏和神经系统。百日咳是一种可能导致长时间咳嗽和窒息的疾病,会导致呼吸困难。所有这些感染都是严重的疾病,可能会导致您的孩子入院。在最坏的情况下,这些情况可能会导致死亡。
细胞间粘附分子-1 (ICAM-1) 被认为是神经炎症反应的启动子,可导致神经退行性以及认知和感觉运动障碍,出现在包括创伤性脑损伤 (TBI) 在内的几种病理生理条件下。然而,ICAM-1 介导的白细胞粘附和迁移的潜在机制及其与 TBI 后神经炎症和功能障碍的联系仍然不清楚。在这里,我们假设阻断 ICAM-1 会减弱白细胞向大脑的迁移并促进 TBI 后的功能恢复。实验性 TBI 是在雄性和雌性野生型和 ICAM-1 − / − 小鼠中通过液体冲击伤 (25 psi) 体内诱发的,并在人脑微血管内皮细胞 (hBMVEC) 中通过拉伸伤 (3 psi) 体外诱发的。我们用 ICAM-1 CRISPR/Cas9 处理 hBMVEC 和动物,并进行了几项生化分析,并证明 CRISPR/Cas9 介导的 ICAM-1 缺失可通过减弱 paxillin/黏着斑激酶 (FAK) 依赖性 Rho GTPase 通路来减轻血脑屏障 (BBB) 损伤和白细胞向脑迁移。为了分析功能结果,我们使用了一组行为测试,其中包括 TBI 后的感觉运动功能、心理压力分析以及空间记忆和学习。总之,这项研究可以确定 ICAM-1 的缺失或阻断在转变为针对 TBI 病理生理学的新型预防方法方面的重要性。