核酸的选择性分裂一直是最具挑战性的主题之一,并且报道了许多优雅的人工核酸酶。1然而,它们中的大多数利用脱氧核糖在目标部位的氧化裂解,而自然核酸酶展示的水解分裂从未被模仿。最大的障碍是为此目的缺乏适当的催化残留物:尚未实现线性DNA的非酶促水解。2线性DNA是如此稳定,以至于催化剂必须表现出显着的加速度(pH 7,25oC的磷酸二酯连接的半衰期估计为2亿年)。3•4至少出于某些目的而言,比氧化性裂解是可取的,因为不涉及可扩散的物种,并且在必要时可以将所得的DNA片段酶上宗教。最近,作者发现灯笼金属离子有效地切割质粒超螺旋DNA。5这里我们表明,这些金属离子的催化成功地适用于单链和
当今发病机理中毒素的概念在植物病理领域取得了重要的位置。因为一旦发现并表征了病原体的有毒代谢产物,它就打开了许多打击病原体的方法。微生物使用毒素作为武器造成损害并最终破坏宿主细胞。植物致病细菌和真菌通过产生可扩散的毒素损害其宿主。这些毒素会诱导几种症状,例如绿化,坏死,浸泡和枯萎,导致植物死亡。这些毒素(次生代谢产物)即使在微分浓度下也对植物也有危险,许多毒素至少繁殖了一些相关的真菌或细菌疾病的症状。植物病原体将毒素用作感染易感宿主的武器。在理解这些微生物毒素的性质,结构及其作用方式方面取得了重大进展,这在本文中进行了讨论。除了被用来确定植物性疾病的耐药性,筛查抗病性突变体并管理疾病,研究致病毒素及其致病性的潜在机制对于了解宿主 - 病原体相互作用至关重要。
Periyasami K,Jacob RS, * Sardar D,Singh S,Kumar R和Gideon DA。(2016)血红素酶的非典型曲线和调制,由低量的不同添加剂催化结局,表明可扩散的自由基在这种氧化还原反应中的强制性参与。生物学125:91–111,PMID:26969799荣誉和奖项2024被选为神经科学的新兴领导者,Weill Cornell Medicine 2023神经科学学会 - 受训人员专业发展奖2022 Dean Dean Excell of Excell of Excell of Excell of Excell of Excell,Baylor Medicine of Medicine of Medicine of Medicine of Medicine of Medicine of Medicine of Medicine 2022 NIH K99/R00 Pather there tern 202 2 22 2 22 2贝勒医学院2010年研究生研究奖学金,生物化学计划,犹他大学选择了口头演示文稿2024 UCSF EPSP,外部外部博士后研讨会计划,UCSF * Honorarium * Honorarium ASN:美国神经化学学会,俄勒冈州波特兰,俄勒冈州 *大学
Netrin-1是用于轴突引导的规范化趋化提示。可以追溯到1890年代,当Cajal博士提出轴突可能会受到可扩散的线索的指导,这些提示吸引了脊柱连任神经元轴突向胚胎脊髓的腹中线的投影,这些提示是分泌的,并在其中分泌了这些线索,并形成了化学动物的渐变渐变(Moore in neuroerepithium(Moore)(Moore)(Moore)。Netrin-1与Netrin-2一起在胚胎鸡脑匀浆中发现并纯化。随后,其他Netrin家族蛋白已被鉴定或与果蝇,小鼠和人类有关(Moore等,2007)。现在,发现Netrins不仅在轴突探路中起作用,而且在其他多种细胞过程中起关键作用,包括细胞迁移,粘附,分化和生存,并参与神经变性(Jasmin等,2021),炎症,炎症,炎症,癌症(Xia等,2022),癌症和其他临床疾病(2022)。Netrin-1已在帕金森氏病(PD),阿尔茨海默氏病(AD)和其他类型的神经系统疾病中进行了研究,我们发现了与AD发病机理有关的Netrin-1的新证据(Bai等,2020)。在这里,我们提供了Netrin-1的概述,以突出其在这些神经系统疾病中的机械作用和生物标志物潜力。
在行为实验动物中对神经元活性的操纵对于阐明脑功能的神经元网络至关重要。光遗传学1和化学遗传学2方法对于确定遗传定义的神经元种群对电路和行为输出的贡献仍然非常有价值。两种方法都具有明显的优势,并在精确的时间尺度上对神经元亚群的活性进行了光遗传控制,并且对整个神经元群体活性的化学遗传控制较慢。以前的工作已经开发了一种工具集,该工具集通过将光发射荧光素酶融合到光遗传学的光响应元件中,从而积分光学和化学遗传学方法,从而产生发光的Opsin或Luminopsin(LMO)(LMO)3 - 5 [图。1(a)]。通过荧光素酶氧化可扩散的荧光素底物产生的生物发光会激活附近的蛋白蛋白。取决于OPSIN的生物物质特性,荧光素酶产生的光可以激发或抑制表达LMO的靶神经元。将光学和化学方法的这种整合允许在同一实验动物中同一神经元的一系列空间和时间尺度上操纵神经活动。例如,可以将整个神经元群体激活的行为成分的贡献与同一神经元子集的群体进行比较,从而通过生物发光或光遗传纤维通过光纤维在化学上激活OPSIN化学。6
微生物电化学系统可应用于生物修复、生物传感和生物能源,是生物、化学和材料科学中一个快速发展的多学科领域。由于这些系统使用活微生物作为生物催化剂,因此了解微生物生理学(即生物膜形成)如何影响这些电化学系统非常重要。具体而言,文献中缺乏评估生物膜对介导电子转移系统中代谢电流输出影响的研究。在本研究中,荚膜红杆菌和假单胞菌 GPo1 被用作模型,它们是通过可扩散的氧化还原介质促进电子转移的非致病菌株。一氧化氮作为一种气态信号分子在生物医学中引起了人们的关注,在亚致死浓度下,其可能会增强或抑制生物膜的形成,具体取决于细菌种类。在荚膜红杆菌中,一氧化氮处理与电流产量增加和生物膜形成改善有关。然而,在 P. putida GPo1 中,一氧化氮处理对应着电流输出的显著降低,以及生物膜的分散。除了强调使用电化学工具来评估一氧化氮在生物膜形成中的影响外,这些发现还表明,基于生物膜的介导电子转移系统受益于增加的电化学输出和增强的细胞粘附,与浮游生物相比,这有望实现更强大的应用。© 2023 作者。由 IOP Publishing Limited 代表电化学学会出版。这是一篇开放获取的文章,根据 Creative Commons 署名非商业性禁止演绎 4.0 许可证 (CC BY- NC-ND,http://creativecommons.org/licenses/by-nc-nd/4.0/) 的条款发布,允许在任何媒体中进行非商业性再利用、发布和复制,前提是不对原始作品进行任何形式的更改并正确引用。如需获得商业再利用许可,请发送电子邮件至:permissions@ioppublishing.org。[DOI:10.1149/1945-7111/acc97e]