[4] HFTO,质子交换膜电解的技术目标。https://www.energy.gov/eere/fuelcells/technical-targets-proton-exchange-membrane-electrolysross [6] Marcinkoski等人,氢氢级8级长途卡车目标(2019)。https://www.hydrogen.energy.gov/pdfs/19006_hydrogen_class8_long_haul_haul_truck_targets.pdf [7] B. James,燃油电池成本和性能分析(2022)。https://www.hydrogen.energy.gov/docs/hydrogenprogragmlibraries/pdfs/review22/review22/fc353_james_2022_o-pdf.pdf.pdf?status=master = master [8] badgett et al。NREL/TP-6A20-8762500。
完整作者列表: Martinez, Alina;科罗拉多大学博尔德分校,材料科学与工程项目 Cox, Lewis;蒙大拿州立大学博兹曼分校,机械与工业工程 Killgore, Jason;美国国家标准与技术研究所 Bongiardina, Nicholas;科罗拉多大学博尔德分校工程与应用科学学院,材料科学与工程 Riley, Russell;科罗拉多大学博尔德分校工程与应用科学学院,化学与生物工程 Bowman, Christopher;科罗拉多大学,化学与生物工程系
摘要 地热发电的普遍优势是其可靠性和基载能力。然而,未来的能源系统需要可靠的能源,这些能源还能对需求的变化做出快速反应。可逆有机朗肯循环 (ORC) 也可用作高温热泵 (HTHP),使地热系统能够更灵活地运行。与区域供热系统和/或储热系统 (例如 HT-UTES) 相结合,可逆 ORC 可以响应电网的需求,从地热盐水中发电或在 HTHP 模式下消耗电力。通过实施存储系统,HTHP 运行期间产生的高温热量可用于在以后增加地热电力输出。这项工作概述了可逆 ORC 在地热系统中的应用和灵活性潜力,并介绍了此类系统的潜在系统布局。
3D到3D形状的非接触式可逆的4D打印变形Amelia Yilin Lee A,Aiwu Zhou A,Jia a a a a a,chee a a a,chee kai a a,yi zhang yi zhang a *新加坡A *新加坡中心3D印刷,机械和航空工程学院Amelia Yilin Lee,Ai Wu Zhou,Jia An 50 Nanyang Avenue博士,639798,新加坡的信函,应与Yi Zhang 50 Nanyang Avenue教授,639798,新加坡电子邮件,新加坡电子邮件:yi_zhang@nang@ntu.edu.sg Prof.Chee kee kai chee chai chai chua:yi_zhang@yi_zhang emagah emage:yi_zhang@eed.22。 cheekai_chua@sutd.edu.sg
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年2月15日。 https://doi.org/10.1101/2025.02.11.637741 doi:Biorxiv Preprint
摘要 卡诺电池被认为是一种有前途的适用于中型和大型应用的电-热-电存储技术。最近,有人提出在卡诺电池中使用两用热机。在这样的系统中,单个装置在充电期间充当热泵(HP,压缩机操作)或在放电期间充当有机朗肯循环(ORC,膨胀机操作)。与使用两台独立机器的传统卡诺电池相比,这种配置降低了该技术的投资成本。已经在小型(1 kW el)卡诺电池中试工厂使用单个涡旋压缩机/膨胀机进行了实验活动。在充电和放电模式下都测试了广泛的操作条件。讨论了系统电荷对两种操作模式下可获得工作点的影响。研究发现,在 HP 模式下运行系统所需的系统电荷低于 ORC 模式。在这些低电荷下,增加 HP 模式下的电荷对系统在较高源温和散热器温度下的性能有积极影响。在 ORC 模式的较高电荷下,发现增加系统电荷对研究的运行范围内的系统启动有积极影响。除了定性讨论外,还对系统和涡旋机进行了定量研究。
摘要 量子点细胞自动机 (QCA) 代表着一种新兴的纳米技术,有望取代当前的互补金属氧化物半导体数字集成电路技术。QCA 是一种极具前景的无晶体管范式,可以缩小到分子级,从而促进万亿级器件集成和极低的能量耗散。可逆 QCA 电路具有从逻辑级到物理级的可逆性,可以执行计算操作,耗散的能量低于 Landauer 能量极限 (kBTln2)。逻辑门的时间同步是一项必不可少的附加要求,尤其是在涉及复杂电路的情况下,以确保准确的计算结果。本文报告了八个新的逻辑和物理可逆时间同步 QCA 组合逻辑电路的设计和仿真。这里介绍的新电路设计通过使用本质上更对称的电路配置来缓解由逻辑门信息不同步引起的时钟延迟问题。模拟结果证实了所提出的可逆时间同步 QCA 组合逻辑电路的行为,该电路表现出超低能量耗散并同时提供准确的计算结果。
❑ 评估类似车辆的堆栈和系统在固定应用中的潜在使用可能带来的成本降低:战略分析车辆研究(James 等人,2012、2017、2018、2019) ◆ 对于以下较低寿命的情况,将堆栈扩大到更高的体积,并调整电池 PGM 和膜/GDL 厚度以降低寿命(从 > 50,000 小时降至 25,000 小时) ◆ 表征兆瓦级工厂组件主要平衡成本 ◆ 更新 DOE HFCTO 固定目标,以包括 MW-PEM H2 燃料电池系统目标以支持电网
点云经常包含噪声和异常值,为下游应用带来障碍。在本文中,我们介绍了一种新颖的点云去噪方法。通过利用潜在空间,我们明确地发现噪声成分,从而可以提取干净的潜在代码。这反过来又有助于通过逆变换恢复干净点。我们网络中的一个关键组件是一个新的多层图卷积网络,用于捕获从局部到全局各个尺度的丰富几何结构特征。然后将这些特征集成到可逆神经网络中,该网络双射映射潜在空间,以指导噪声解缠结过程。此外,我们使用可逆单调算子来模拟变换过程,有效地增强了集成几何特征的表示。这种增强使我们的网络能够通过将噪声因素和潜在代码中的内在干净点投影到单独的通道上来精确区分它们。定性和定量评估均表明,我们的方法在各种噪声水平下都优于最先进的方法。源代码可在 https://github.com/yanbiao1/PD-LTS 获得。
在模型生物中定向诱变是基因功能注释和生物医学研究的关键。尽管 CRISPR-Cas9 系统在基因编辑方面取得了技术进步,但在大型动物模型中快速有效地引入定点突变仍然是一个挑战。在这里,我们开发了一种强大而灵活的插入诱变策略,即同源性独立的靶向捕获 (HIT-trapping),它是通用的,可以有效地靶向捕获内源性目的基因,而不依赖于同源臂和胚胎干细胞。进一步优化并为 HIT-trap 供体配备位点特异性 DNA 倒置机制,可以在单个实验中一步生成可逆和条件等位基因。作为概念验证,我们成功地在原代猪成纤维细胞中为 21 种疾病相关基因创建了突变等位基因,平均敲入频率为 53.2%,比以前的方法有了很大的改进。这里提出的多功能 HIT 捕获策略有望简化突变等位基因的靶向生成,并促进猪等大型哺乳动物的大规模诱变。