c . 酿酒酵母 ( Baker's yeast, Saccharomyces cereviciae )
纳米颗粒(AGNP)是尺寸小于100 nm的材料,在生物医学研究领域的纳米技术发展方面正在领先[1]。这些微小的颗粒在表面积与颗粒体积之间具有显着的比率,从而使它们具有独特的特征并提高了它们在力学,催化,光学和磁性等区域的能力。这扩大了它们在生物医学中的潜在应用[2]。在各种金属中,银已广泛用于病原体控制,净水和食物保存等应用[3]。纳米技术的最新发展使银纳米颗粒(AGNP)广泛用于其抗菌,抗癌和抗炎特性,这是由于其独特的光学,磁性,磁性,催化和电子特征[4]。
最近,纳米技术在解决环境问题(例如废水处理)中起着重要作用。金属氧化物(例如铜氧化物和锌氧化物)在水纯化中起作用。因此,这项工作旨在使用环保和成本效益的生物吸附剂从合成废水样品中去除甲基蓝色染料;铜\氧化锌双金属(CuO \ ZnO)是通过使用Fussarium oxysporum提取物合成的,并通过等温和动力学研究评估了生物吸附性能。通过UV-VIS分光光度计和透射电子显微镜(TEM)表征了生物合成的Cuo \ ZnO纳米颗粒。从TEM显微照片中,CuO \ ZnO粒径范围为9-40 nm,UV分光光度法显示在241 nm处的特征峰。抗菌活性具有抗菌活性(金黄色葡萄球菌,枯草芽孢杆菌),代表革兰氏阳性细菌,(埃斯切里虫大肠杆菌,埃斯切里希菌,kleblebsiella sp),代表革兰氏维度的细菌,是革兰氏含量的细菌,它是革兰氏维度的浓度,是在最大化的cleliria中,是一个最大的clel clel contria clieper clel clel clel contria cyles cysers cy clel clel clel clecter contria和1M的最大值。金黄色葡萄球菌比克莱布斯拉SP和枯草芽孢杆菌更多。 实验数据表明,将Langmuir模型和伪二阶模型拟合到数据中,并且生物吸附能力达到了最大值,并记录为68.199 mg/g。抗菌活性具有抗菌活性(金黄色葡萄球菌,枯草芽孢杆菌),代表革兰氏阳性细菌,(埃斯切里虫大肠杆菌,埃斯切里希菌,kleblebsiella sp),代表革兰氏维度的细菌,是革兰氏含量的细菌,它是革兰氏维度的浓度,是在最大化的cleliria中,是一个最大的clel clel contria clieper clel clel clel contria cyles cysers cy clel clel clel clecter contria和1M的最大值。金黄色葡萄球菌比克莱布斯拉SP和枯草芽孢杆菌更多。实验数据表明,将Langmuir模型和伪二阶模型拟合到数据中,并且生物吸附能力达到了最大值,并记录为68.199 mg/g。
二萜紫杉醇(紫杉醇)是一种化学疗法药物,被广泛用作针对几种固体癌的第一线治疗。自然来源的紫杉醇供应有限。然而,关于紫杉醇生物合成的几个特定代谢步骤所涉及的基因的缺失知识使其很难设计完整的途径。在这项研究中,我们使用了转录组学,细胞生物学,代谢组学和途径重建的组合来确定紫杉醇生产所需的完整基因集。我们从紫杉醇生物合成的当前模型中识别了缺失的步骤,并通过尼古拉·本塔米亚纳(Nicotiana Benthamiana)的异源表达确认了大多数缺失酶的活性。值得注意的是,我们确定了一种新的C4 B -C20环氧酶,该酶可以克服最初的代谢工程。We used both previously characterized and newly identified oxomutases/epoxi- dases, taxane 1 b -hydroxylase, taxane 9 a -hydroxylase, taxane 9 a -dioxygenase, and phenylalanine-CoA ligase, to successfully biosynthesize the key intermediate baccatin III and to convert baccatin III into pacli- taxel in N.本塔米亚娜。结合使用,这些方法为分类生物合成建立了代谢途径,并提供了植物用来产生复杂生物活性代谢物的独特化学反应的见解。
1. Ren J、Lee J、Na D. 基于合成生物学的基因工程工具的最新进展。J Microbiol. 2020;58:1-0。2. Lee HM、Vo PN、Na D. 合成生物学辅助代谢工程的进展。Catalysts. 2018;8(12):619。3. McCarty NS、Ledesma-Amaro R. 用于生物技术工程微生物群落的合成生物学工具。Trends Biotechnol. 2019;37(2):181-197。4. Breitling R、Takano E. 合成生物学在药物生产中的进展。Curr Opin Biotechnol. 2015;35:46-51。5. Nikel PI、Martínez-García E、de Lorenzo V. 利用合成生物学进行假单胞菌的生物技术驯化。Nat Rev Microbiol. 2014;12(5):368-379。6. Li J, Zhao H, Zheng L, An W. 合成生物学和生物安全治理进展。Front Bioeng Biotechnol. 2021;9:598087。7. Patra P, Das M, Kundu P, Ghosh A. 用于在非传统酵母中开发新型细胞工厂的系统和合成生物学方法的最新进展。Biotechnol Adv. 2021;47:107695。8. Chi H, Wang X, Shao Y, Qin Y, Deng Z, Wang L 等。用于系统和合成生物学的微生物底盘的工程设计和改造。Synth Syst Biotechnol. 2019;4(1):25-33。 9. Ruiz Amores G、Guazzaroni ME、Magalhães Arruda L、Silva-Rocha R. 系统和合成生物学方法在将真菌改造为微生物细胞工厂方面的最新进展。Curr Genomics。2016;17(2):85-98。10. Vavitsas K、Glekas PD、Hatzinikolaou DG. 嗜热菌的合成生物学:将生物工程推向极致?Appl Microbiol。2022;2(1):165-174。
丝状真菌是高产的细胞工厂,其中许多是酶、有机酸和次级代谢物的工业生产者。越来越多的真菌基因组测序揭示了转录沉默的次级代谢物生物合成基因簇 (BGC) 形式的巨大且未开发的生物合成潜力。人们已经采取了各种策略来探索和挖掘这种尚未开发的生物活性分子来源,随着合成生物学的出现,已经为丝状真菌开发了新的应用和工具。在这里,我们总结了旨在表达内源或外源天然产物 BGC 的方法,包括合成转录因子、人工转录单元的组装、基因簇重构、真菌穿梭载体和平台菌株。
天然产品及其相关的衍生产品在药物发现中起着重要作用,并且是设计多种合成生物活性化合物的灵感。随着分子生物学的最新进展,建立了许多工程工具和策略,以加速学术和工业环境中的自然产品合成。然而,天然产物生物合成的许多障碍仍然存在。例如,本地途径不适合研究或生产;关键酶没有足够的活性。本地宿主不适合高级生产。新兴的分子生物学工具和策略不仅是为了改善自然产品滴度,而且还产生了新型的生物活性化合物。在这篇综述中,我们将在三个主要层面上讨论这些新兴的分子生物学工具和策略:酶水平,途径水平和基因组水平,并强调它们在自然产物分离和开发中的应用。
真菌聚酮化合物是一大批二级代谢产物,由于它们的药理活性多样,很有价值。纤维化真菌中的聚酮化合物生物合成提出了一些挑战:小产量和低纯度滴度。为了解决这些问题,我们改用了易于栽培的异源宿主的酵母Yarrowia Lipolytica。作为润滑脂酵母,脂溶作脂溶剂显示出用于脂质合成中使用的乙酰基和丙二酰-COA前体。同样,乙酰基和丙二酰辅酶A是许多天然聚酮化合物的基础,我们探索了将这种漏斗重定向到聚酮化合物生产的可能性。尽管有前途的前景,但Y. lipolytica到目前为止仅用于植物中简单的III型聚酮化合物合酶(PKS)的异源表达。因此,我们决定通过靶向由I型PKS合成的更复杂的真菌聚酮化合物来评估Y.脂溶液的潜力。我们采用了CRISPR-CAS9介导的基因组编辑方法来实现负责索拉尼(FSR1,FSR2和FSR2和FSR3)和6-甲基酸(6-MSA)生物合理的基因(FSR1,FSR2和FSR2)和6-甲基酸(6-MSA)生物合理的基因的基因整合。此外,我们通过代谢工程过度表达了两种参与脂质B氧化的酶TGL4和AOX2,从而尝试通过代谢工程进行优化,但我们没有观察到对聚酮化合物产生的影响。最大滴度为403 mg/L 6 msa和35 mg/L bostrycoidin,后者大大高于我们先前在酿酒酵母(2.2 mg/l)中的结果,这项工作证明了Y. lipolytica的潜力,是Y. lipolytica作为复杂型Fungal Polygal Polygelidides的杂同生产的平台。
假单胞菌丁香和早期的土地植物谱系。Curr Biol 29:2270-2281。iChihara,I,Shiraishi,K,Sato,H等。 (1977)冠状动脉结构。 J AM Chem Soc 99:636-637。 Inagaki,H,Miyamoto,K,Ando,N等。 (2021)在Momilactone中解密的OPDA signaling成分 - 产生苔藓的calohypnum plumiforme。 前植物科学12:688565。 Katsir,L,Schilmiller,AL,Staswick,Pe等。 (2008)COI1是jasmonate和细菌毒力性冠状动脉的受体的关键成分。 Proc Natl Sci Acad USA 105:7100-7105。 Koeduka,T,Ishizaki,K,Mwenda,CM等。 (2015)来自利弗沃特的牛龙氧化物合酶的生化特征和绿色的微藻毛乳杆菌可深入了解植物CYP74家族的进化差异。 Planta 242:1175-1186。iChihara,I,Shiraishi,K,Sato,H等。(1977)冠状动脉结构。J AM Chem Soc 99:636-637。Inagaki,H,Miyamoto,K,Ando,N等。 (2021)在Momilactone中解密的OPDA signaling成分 - 产生苔藓的calohypnum plumiforme。 前植物科学12:688565。 Katsir,L,Schilmiller,AL,Staswick,Pe等。 (2008)COI1是jasmonate和细菌毒力性冠状动脉的受体的关键成分。 Proc Natl Sci Acad USA 105:7100-7105。 Koeduka,T,Ishizaki,K,Mwenda,CM等。 (2015)来自利弗沃特的牛龙氧化物合酶的生化特征和绿色的微藻毛乳杆菌可深入了解植物CYP74家族的进化差异。 Planta 242:1175-1186。Inagaki,H,Miyamoto,K,Ando,N等。(2021)在Momilactone中解密的OPDA signaling成分 - 产生苔藓的calohypnum plumiforme。前植物科学12:688565。Katsir,L,Schilmiller,AL,Staswick,Pe等。 (2008)COI1是jasmonate和细菌毒力性冠状动脉的受体的关键成分。 Proc Natl Sci Acad USA 105:7100-7105。 Koeduka,T,Ishizaki,K,Mwenda,CM等。 (2015)来自利弗沃特的牛龙氧化物合酶的生化特征和绿色的微藻毛乳杆菌可深入了解植物CYP74家族的进化差异。 Planta 242:1175-1186。Katsir,L,Schilmiller,AL,Staswick,Pe等。(2008)COI1是jasmonate和细菌毒力性冠状动脉的受体的关键成分。Proc Natl Sci Acad USA 105:7100-7105。Koeduka,T,Ishizaki,K,Mwenda,CM等。 (2015)来自利弗沃特的牛龙氧化物合酶的生化特征和绿色的微藻毛乳杆菌可深入了解植物CYP74家族的进化差异。 Planta 242:1175-1186。Koeduka,T,Ishizaki,K,Mwenda,CM等。(2015)来自利弗沃特的牛龙氧化物合酶的生化特征和绿色的微藻毛乳杆菌可深入了解植物CYP74家族的进化差异。Planta 242:1175-1186。
近年来,全球粮食和能源危机引起了广泛关注。植物合成生物学正成为解决这些问题的一个有吸引力的解决方案,它将植物生物学与工程原理相结合,设计和生产价格低廉且易于扩大规模的新设备或产品。植物合成生物学以植物为底盘,设计和构建具有特定功能的新型生物系统,或通过基因编辑和代谢工程等技术生产有价值的化合物。虽然植物合成生物学在过去几年中取得了重大进展,但对其潜在的生物合成和调控机制的全面理解仍有待探索。本研究主题包含一系列原创研究论文和评论,共同呈现绿色生物制造中植物底盘和植物基因的最新研究趋势和方法,旨在促进植物底盘材料在生物制造中的更广泛应用和植物合成生物学的发展。在这里,我们重点介绍了几项旨在优化代谢途径和植物底盘整合的研究,以经济高效的方式生产有价值的化合物。涉及各种策略,包括多组学分析、底盘开发和基因功能研究。烟草是一种植物底盘,已广泛用于植物合成生物学的体外培养。因此,研究其体外培养中的代谢网络具有重要意义。这有助于促进体外技术在植物繁殖中的应用。为了全面了解烟草体外培养中的代谢网络,Yu等人。建立了一个基因组规模的代谢网络(GSMN),这是一种旨在促进整体代谢谱表征的工具。与土壤种植的烟草相比,体外烟草生长速度较慢、生物量减少、光合作用受到抑制、代谢物和代谢途径发生改变。辣木及其相关物种在健康、食品、化妆品和制药行业具有潜在应用。Klimek-Szczykutowicz 等人提出综述,
