建筑环境是温室气体排放的主要来源,消耗了大量的可用能源和自然资源。1-3 联合国估计,全世界建筑物的能源消耗占全球能源总消耗量的 30-40%,相当于每年 25 亿吨石油当量 (Mtoe);尽管可持续建筑实践有所改善,但随着城市化进程的加快,预计建筑能耗将急剧上升。建筑物的建造和运营消耗了全球总水资源的 16%、总采伐木材(原木)供应量的 25% 和总骨料供应量(原石、沙子和砾石供应量)的 40%,从而大大消耗了自然资源的生态系统。4,5 近期,许多努力都集中在减少建筑环境在建造、运营和报废处置或再利用/回收过程中的碳足迹。可以说,与这一努力相关的一个内在困难是同时降低体现能源和运营能源的价值,这往往会产生相反的效果
与其他金属和复合材料相比,铝具有制造工艺简单、耐腐蚀、重量轻和成本低等优点[7]。设计飞机结构的重要参数包括抗疲劳性、密度、断裂韧性、强度和耐腐蚀性[7]。此外,在静态重量下受到拉伸时,上侧会产生压缩载荷,而下侧则相反;因此,在飞行过程中需要仔细优化拉伸和压缩强度[7]。因此,铝作为最轻的金属,可以轻松取代其他金属并承受由于飞机大型化而增加的机翼压力载荷[8]。在这方面,航空航天工业使用不同类型的铝合金,其中一些在表2中给出。然而,常见的类别大多来自2xxx和7xxx系列[9]。2000系列合金具有良好的抗疲劳裂纹扩展能力并拥有卓越的损伤容限。因此,它们通常用于飞机的机身蒙皮和下机翼,其中断裂韧性(即抗裂纹扩展)是一个重要的设计参数 [6] 。 Al2024-T3 是机身结构中最常用的 2000 系列合金 [10] 。 7000 系列通常用于上机翼蒙皮,其中强度是主要的设计因素 [6] 。 Al7075-T6 是
Elementum 3D 利用创新的反应性增材制造 (RAM) 技术引入了新的商用铝合金和高性能金属基复合材料,以与现有的增材制造设备配合使用。RAM 利用放热化学反应在增材熔合过程中原位合成产品材料。RAM 工艺可用于生产各种材料,但特别适合通过反应性合成陶瓷增强材料来生产陶瓷增强金属基复合材料 (MMC)。该工艺可以从针对工艺流程和铺展性进行了优化的较大 AM 原料粉末中合成亚微米陶瓷增强材料。亚微米增强材料还可在合金凝固过程中充当成核剂,以产生有利的细粒等轴铝微观结构。通过成核细等轴微观结构,该工艺克服了困扰许多铝合金的热裂性问题。通过少量合成陶瓷,2024 和 6061 等合金变得可打印,并且性能与锻造合金相当。增加陶瓷含量可提高强度、模量、耐磨性和高温性能,同时降低热膨胀系数和延展性。
为探索节约能源、促进能源再生的途径,本文介绍了新型高熵合金材料的合成及其在能源转换与储存方面的应用。通过分析其高强度、抗回火、抗软化等性能,制备了一种新型高熵合金材料。根据其微观组织和铸态组织,研究了新型高熵合金的电化学性能。实验结果表明,与FeSn2相比,新型高熵合金材料在循环充电过程中的容量、电化学性能、容量稳定性和倍率均具有较大优势;在较低的退火温度下,实心Co纳米颗粒在纳米尺度上通过kirkentel效应进一步转变为空心Co3O4纳米球。 NC-Co 3 O 4 纳米复合材料作为锌空气电池阴极表现出优异的 OER 和 ORR 性能:低过电位 352 mv、高初始还原电位 0.91 v 和半波电位 0.87 v、高开路电压 1.44 v、电容 387.2 mah/g 和优异的循环稳定性。来自高熵合金-74 的 Nico 双金属磷化物纳米管是有效的水分解电催化剂。
固溶体合金的声子散射是降低晶格热导率的一种已证实的机制。Klemens 分析模型既可以作为工程材料的预测工具,特别是在热电领域,也可以作为快速发展的复杂和缺陷材料热传输理论的基准。本评论/综述概述了用于预测由于合金散射引起的热导率降低的简单算法,以避免常见的误解,这些误解会导致对质量涨落散射的大幅高估。Klemens 空位散射模型预测的散射参数比通常假设的要大近 10 倍,但由于误差抵消,这种巨大的影响常常无法检测到。Klemens 描述可推广用于对具有缺陷的复合材料的从头算计算。解析近似与实验和理论的接近性揭示了从复杂性中出现的简单现象和降低热导率的未知机会。
摘要 高 Jc 镍基高温合金在航空航天、海洋、核能和化学工业中得到广泛应用,这些工业领域需要具有出色的抗腐蚀和抗氧化性能、优异的机械性能和出色的高温性能。然而,由于这些合金的化学性质复杂,基于选择性激光熔化 (SLM) 的高 Jc 镍基高温合金的增材制造 (AM) 面临重大挑战。这些材料具有多种合金元素和较高的铝+钛含量,当通过 SLM 固结时会形成各种二次相,严重影响可加工性,导致裂纹的形成。本综述的目的是总结迄今为止在高 Jc 镍基高温合金 SLM 方面取得的进展,特别强调阐明该合金系统中加工、微观结构和性能之间的关系。关键词:高 Jc 镍基高温合金、增材制造、选择性激光熔化 (SLM)、加工、微观结构、力学性能
gators 仅包括单一温度数据(例如室温),而不包括时间相关曲线(例如应力-应变、疲劳或蠕变),则不包括数据。此类调查通常记录趋势
在恒幅试验条件下,金属和合金的疲劳裂纹扩展 (FCG) 行为通常用裂纹扩展速率 da/dN 与应力强度因子范围� K 之间的关系来描述。图 1 示意性地显示了速率 da/dN 与� K 的典型对数-对数图,该图具有 S 形,可分为三个区域 [1-4]。区域 I 是近阈值区域,其中曲线变得陡峭并似乎接近渐近线� K th ,即下限� K 值,低于该值预计不会发生裂纹扩展。区域 II(中间区域)对应于稳定的宏观裂纹扩展。巴黎幂律 [5] 是一种经验关系,在对数-对数拟合中显示一条直线,是中等裂纹扩展速率(10 -8 至 10 -6 m/循环)此区域中疲劳的基本模型。区域 III 与最终失效前的快速裂纹扩展有关,主要受 K c 控制,即材料和厚度的断裂韧性。长期以来,人们观察到,对于固定的 � K ,da/dN 受应力循环不对称性的强烈影响,通常以载荷比 R 表示 [6-8]。发现阈值应力强度值 (� K th ) 取决于 R
具有竹节粒结构、顶部覆盖 Al 3 Ti 层并以 W 柱终止的 Al(Cu) 细线是 Si 集成电路中越来越常见的一类互连线。这些线易受跨晶电迁移引起的故障影响。电迁移引起的应力演变可以用一维扩散-漂移方程建模,该方程的解需要了解传输参数。通过开发和执行使用在氧化 Si 基板上制造的单晶 Al 互连线的实验,明确地确定了 Al 中 Al 和 Cu 的跨晶扩散和电迁移特性。在顶部覆盖多晶 Al 3 Ti 覆盖层的钝化 Al 单晶线(2.0 μm 宽,0.4 μm 厚)上进行了加速电迁移寿命测试。覆盖层由 Al 与 Ti 覆盖层的反应形成。电迁移引起失效的激活能确定为 0.94±0.05 eV。以前对没有 Al 3 Ti 覆盖层的 Al 单晶的研究得出的激活能为 0.98±0.2 eV,寿命相似。结论是,Al 3 Ti 覆盖层不会影响跨晶电迁移的动力学和机制。此外,这些结果表明,单晶 Al 互连线电迁移引起失效的限速机制不是扩散,或者令人惊讶的是,Al 沿 Al/Al 3 Ti 界面的扩散率大约等于或低于 Al 沿 Al/AlO 界面的扩散率。还通过实验研究了 Cu 在单晶 Al 线中的扩散和电迁移特性。测试结构由平行线(5.0 μm 宽,0.4 μm 厚)组成,交替线终止于共用接触垫。铜被局部添加到所有线的相同区域,并通过分析 Cu 的浓度分布来表征温度和电流密度的影响