志愿者 问:什么是马尔堡病毒? 答:马尔堡病毒是一种传染性极强的病毒,可引起马尔堡病毒病(MVD),这是一种与埃博拉相似的严重出血热。它与埃博拉同属丝状病毒科,由果蝠传播给人类,并通过直接接触感染者(包括死者)的体液在人与人之间传播。 问:马尔堡病毒的症状和体征是什么? 答:症状通常突然出现,包括发烧、发冷、头痛和肌肉疼痛。后期可能包括严重出血(大出血)、呕吐、腹泻、腹痛、喉咙痛和皮疹。在严重的情况下,可能会发生器官衰竭和死亡。 问:马尔堡病毒如何传播? 答:马尔堡病毒通过直接接触感染者的体液(血液、唾液、汗液、精液、呕吐物、尿液、粪便)或死者尸体传播。它还可以通过接触受污染的表面或材料(如床上用品和衣物)传播。问:如何诊断马尔堡病毒?答:马尔堡病毒通过实验室检测进行诊断,通常在专门的实验室进行。采集血液样本或口腔拭子以检测与感染相关的病毒或抗体。早期诊断对于防止进一步传播至关重要。如果不进行检测,很难在临床上将马尔堡病毒病与其他传染病(如疟疾、伤寒、志贺氏菌病、脑膜炎和其他病毒性出血热)区分开来。问:如何治疗马尔堡病毒?答:马尔堡病毒没有特定的抗病毒治疗方法。治疗是支持性的,侧重于控制症状。这包括补液、平衡电解质以及使用药物退烧、止痛和控制出血。强化支持治疗可以提高生存率。问:有针对马尔堡病毒病的疫苗吗?答:截至目前,尚无针对马尔堡病毒病的许可疫苗。然而,一些实验性疫苗正在开发和测试中,其中萨宾疫苗目前正在卢旺达为医护人员和急救人员提供。问:如何预防马尔堡病毒的传播?答:预防马尔堡病毒的传播需要:
摘要。在澳大利亚昆士兰州北部爆发的中期死亡综合症期间,对 24 只濒死对虾进行了调查,首次从中培养出 14 株支原体分离株。从对虾的鳃附属物、大脑和眼睛中分离出支原体。支原体在含有 0.5 至 3.0% 氯化钠和 20% 胎牛血清的改良 Frey 培养基中,在有或没有 CO2 的情况下在 20 至 37°C 之间生长。在 37°C 和 5% CO2 下观察到最佳生长。所有菌株都经过大小过滤和克隆,并将它们的形态、生化和生物分子特征与以前描述的支原体种的特征进行了比较。结果表明,这些菌株属于 2 个新种,为其指定了临时名称支原体 P1 (MPI) 和支原体 P2 (MP2)。两种支原体都能发酵大多数测试的碳水化合物,但不能水解精氨酸和尿素。MP1 产生薄膜和斑点,具有高磷酸酶活性,但 MP2 不会产生薄膜或斑点,也没有磷酸酶活性。两种物种都能裂解绵羊红细胞。从 MP1 DNA 中制备基因组文库(Mbol 消化)并克隆到 pUC19 中。使用从纯化的 MPI 制备的探针进行菌落杂交,以识别感兴趣的菌落。通过用 EcoRI 和 HindIII 消化从重组质粒中回收 MP1 DNA 片段。该 DNA 用于制备随机引物探针,用于与来自 MP1、MP2、M. bovis、M. dispar、M. agalactiae、M. bovjyenitalium、M. ovipneumonjae、支原体组 7、M. aryinini 和属于不同属的细菌的固定 DNA 进行点印迹杂交分析。该探针仅与来自 MP1 的基因组 DNA 发生反应。为了进一步提高灵敏度,设计了一种 MP1 特异性聚合酶链反应 (PCR) 检测方法,并产生了 254 bp 扩增子,可将 MP1 与所有其他测试的支原体 DNA 区分开来。使用 DNA 探针和 PCR 检测方法,从患病虾中分离出的大多数支原体可指定为菌株 MP1 (11/14,-80%)。
摘要。藻类细菌群落以生产破坏藻酸盐的抗生素酶而闻名,这些酶是生物膜的主要成分的藻酸盐。生物膜相关感染是危险的,因为它们对抗生素和人类免疫系统产生了抗性。这项工作报告了基于分子系统学和系统发育分析16S rRNA的几种海洋藻素细菌,可能是新的物种。它们是从不同的棕色藻类氢层sp中分离出来的。居住在印度尼西亚Wakatobi的Hoga岛周围的海洋中。这项研究旨在揭示这些细菌分离株的分子身份和亲属关系,以理解其更多的特性,即氢氯拉斯sp的共生体。分子鉴定和系统发育树的结构是根据使用27F-1492R引物的聚合酶链反应对16S rRNA基因扩增的序列进行的。可以获得总共31种棕色藻类氢氯拉鲁斯共生细菌的分离株,表明藻类是海洋细菌的有吸引力的共生菌宿主。能够产生藻酸盐裂解酶和琼脂酶的分离株数量为15。然而,在用最小藻酸盐培养基进行确认测试后,只有15个分离株中只有12个是藻酸盐裂解酶生产者。在具有最高藻体级指数的8个分离物上的分子鉴定显示了与3种不同属的最接近的关系:颤音,拟南芥和aestuariibacter。基于BLAST(基本局部对齐搜索工具)分析,5比其对齐结果的最高命中率低于97%的相似性水平,表明它们可能是新物种。这些发现表明了海洋棕色藻类氢层sp的潜力。是藻素溶液的潜在宿主。关键词:琼脂酶,藻酸盐裂解酶,海洋细菌,瓦卡托比。简介。抗生素酶是可用于控制和去除细菌生物膜的酶的类型。这些酶溶解了包含细菌细胞外基质的多糖,蛋白质和核酸。抗生素酶包括脂肪酶,可防止纤维旁溶血生物膜和纤维素酶的生长,这些脂肪酶会分解大多数生物膜中存在的纤维素(Gutiérrez2019)。也已经证明了脂肪酶,纤维酶和蛋白酶K等组合酶在预防和消除副溶血性生物膜上有效(Li et al 2022)。其他生物膜控制酶包括β-葡萄糖酶,蛋白酶和淀粉酶,它们可以分解EPS基质并防止生物膜的产生。抗生素酶被认为比传统方法更有效,更环保,例如侵袭性化学物质,例如氢氧化钠或次氯酸钠,它们可以腐蚀机械和材料(Blackman 2021)。
Sravani Gogisetty,Mihira Kumara Mishra和Prabhat Ranjan Mishra摘要生物学世界由真菌的多样性和复杂性以及无与伦比的自然美所占据主导地位。各种微生物,包括丝状真菌,细菌和酵母菌,栖息在复杂的陆地生态系统中,称为叶斑铂,在植物叶的表面上发现。在叶子表面生长的霉菌称为phylloplane真菌。内生真菌经常在植物组织空间中无知地生活。在某个宿主植物中,它们会在细胞内或细胞间发育,以完成其生命周期的全部或一部分。他们被发现与在自然环境中生长的每种植物几乎都相连。,由于它们在植物的生存中的关键功能,因此他们被选为在整个进化过程中与宿主共同发展。传统的压力治疗方法一直以化学物质的使用为中心,由于化学物质的使用,由于其挥之不去的毒性,这种方法被证明是环境有害的。,由于它们是如此安全地使用,因此在科学界,生物学方法变得越来越受欢迎。作物植物植物植物是非致病微生物的重要来源,其中一些生物在治疗细菌和真菌感染方面表现出了有效性。使用琼脂板和湿室技术,从Arhar Cajanus Cajan的健康叶子中分离出了从9种不同属的14种真菌物种。关键字:Arhar,内生菌,霉菌,Phylloplane简介Cajanus Cajan(L。)通常被称为Pigeon Pea,Arhar,Red Gram或tur是亚洲和非洲半干旱热带地区的重要食用豆类(Kumar Cv等,2015,2015年)[11] [11]。在各种环境中,它在全球475万英亩(Choudhary AK等,2014)[5]上生长。它填补了小农雨养农民的可持续农业方法中的关键空隙。它在印度雨林农业中占有重要地位。这是该国各种农业生态学的重要组成部分,通常与谷物,豆类,油籽和小米相互互动。这是鹰嘴豆后的第二大脉冲作物,面积超过442万公顷(HA),输出为2.86吨或所有脉搏产生的16%,产量约为707 kg/ha。以及各种鸽子豌豆植物组件的多种用途,它主要被消耗为全国干燥的Dhal。在印度,大多数人口是素食主义者,提高农作物的生产力尤为重要,因为它有助于打击蛋白质缺乏症(Kumar Cv等,2015)[11]。由于必需氨基酸的免费性质,当小麦或大米与红克结合时,生物学值显着增加。核黄素,赖氨酸,烟酸,铁和硫胺素特别丰富。此外,众所周知,通过以每公顷40 kg的速度固定氮,并释放土壤结合的磷(Choudhary Ak等,2014)
摘要 番茄是世界上第一种被食用的蔬菜。它生长在非常不同的条件和地区,主要用于加工番茄的田间,而新鲜市场番茄通常在温室中生产。番茄面临着许多环境压力,包括生物压力和非生物压力。如今,许多新的基因组资源可用,从而加速了遗传进程。在本章中,我们将首先介绍培育气候智能型番茄的主要挑战。我们将介绍与生产力、果实质量和对环境压力的适应有关的育种目标,特别关注气候变化如何影响这些目标。在第二部分中,将介绍可用的遗传和基因组资源。然后将讨论传统和分子标记育种技术。然后将特别关注生态生理建模,这可能构成定义适应育种目标的新理想型的重要策略。最后,我们将说明如何实施新的生物技术工具以及如何使用它们来培育气候智能型番茄。 关键词:番茄,育种,生产力,生物胁迫,非生物胁迫,理想型,建模 1 简介 番茄是继马铃薯之后世界上第一种被食用的蔬菜。它已成为许多国家的重要食品。番茄主要有两种品种:用于加工业的有限生长番茄,仅在露地生产;用于新鲜市场的无限生长品种,可在从露地到受控条件的温室等各种条件下种植。番茄,Solanum lycopersicum L.,与马铃薯、茄子和辣椒同属茄科。它是一种自花授粉作物,具有中等大小(950 Mb)的二倍体(2n=2x=24)基因组。2012 年发表了一个高质量的参考基因组序列(番茄基因组联盟,2012 年)。番茄原产于南美洲,还有 12 种野生近缘种,可与栽培番茄品种杂交。存在几个大型遗传资源集合,这些基因库中保存了 70,000 多个品种。这些集合还包括科学资源,例如突变体集合或分离种群。长期以来,番茄也是遗传分析的典型物种。许多诱导重要表型变异的突变被发现并被克隆,许多抗病基因的功能也得到了表征。番茄也是果实发育和生理学的典型物种。它易于转化,是第一种生产和销售的转基因食品(Kramer 和 Redenbaugh,1994 年)。在本章中,我们将首先介绍培育气候智能番茄的主要挑战。与生产力相关的育种目标,我们将介绍水果品质和对环境压力的适应性,特别关注气候变化如何影响这些目标。第二部分将介绍可用的遗传和基因组资源。然后讨论传统和分子标记育种技术。然后,我们将特别关注生态生理建模,这可能是定义适应育种目标的新理想型的重要策略。最后,我们将说明如何实施新的生物技术工具以及如何将其用于培育气候智能型番茄。