NAVSEA 标准项目 FY-24 项目编号:009-76 日期:2022 年 10 月 25 日 类别:II 1.范围:1.1 标题:波导和刚性同轴铺设;完成 2.参考:2.1 SE000-01-IMB-010,海军安装和维护手册 (NIMB),第 IX 节,安装标准(来源 CD:N0002400003)3.要求:3.1 断开主管指定的最后一个机械接头处的每个干燥空气压力管线,并将临时氮气或干燥空气铺设控制/监控面板和相关设备连接到船舶的干燥空气面板。3.1.1 在停泊条件允许的情况下,确保临时氮气或干燥空气停泊控制/监控面板正常运行,以连续监控设备处所内的临时氮气或干燥空气。3.1.1.1 可选择使用船舶的干燥空气控制/监控面板,但仅限于停泊条件允许且已验证设备的干燥空气控制/监控面板正常运行,以连续监控设备处所内的临时干燥空气时。3.2 按照 2.1 中的 5-2.7 段完成每根波导和刚性同轴电缆的不间断氮气或干燥空气停泊。3.2.1 请勿将未调节的加压空气连接到设备子组件或部件。确保每个临时干燥空气压力源均已连接,以防止因过压导致设备损坏。不得向波导提供超过该设备规定的正常工作压力的压力。3.2.2 确保临时干燥空气符合 2.1 中第 5-1.14 和 5-1.15 段的要求以及以下要求: 3.2.2.1 露点:80 PSIG 时为零下 40 华氏度。
室内单元 - A 28“ x 28”足迹。室外单元 - 具有铰链安装的门,具有ECM式集线器电动机的真实速度,可最大程度地效率。可安装腿部套件。压缩机 - 谷轮两阶段滚动,具有双重隔离,可安静地操作。位于室内部门,以便于寒冷的服务和更好的制冷剂/油管理。硬启动套件 - 所有型号的标准。eev(电子膨胀阀) - 保持精确的制冷剂流动。滤光片和视玻璃 - 所有单元的标准。累加器 - 保护压缩机免受液体打滑。同轴热交换器 - 增强的表面同轴风格热交换器(CUNI可用)。家用热水 - 安装了双壁热交换器和铜管头ECM循环厂。智能除霜逻辑 - 最大程度地减少解冻室外线圈所需的能量。室外冰通道设计 - 倾斜的室外线圈,没有底部托盘可减少冰的堆积。gen2板 - 包括内置的aquastat功能,BACNET,数据记录,制冷剂压力的电子读数和水中的水。制冷剂压力传感器 - 电子高和低,由用户界面显示。服务端口 - 高和低服务端口,以快速连接到歧管仪表集。橱柜 - 缎面饰有粉末涂层。听觉上的隔热以进行安静的操作。门 - 所有4个侧面面板都可以卸下,电盒摆动以进行四边维修。可用尺寸-2-6个名义吨。分配类型 - 辐射地板在地板上加热和通过水力空气处理程序进行冷却。
但是,该方程仅对不可压缩流体有效。对于高速飞行的飞机(高于约 250 kt),必须考虑压缩性的影响。这是在 ADC(大气数据计算机)中根据从空中捕获的数据完成的。皮托管通过末端的孔捕获总压力,将其路由到 ASI 和传感器,然后从那里路由到 ADC。但是,皮托管还可以通过同轴包裹皮托管的管道包含静压出口(P T )。这种配置称为皮托管静压管(图 2)。静压出口是位于皮托管周围管道两侧的孔,这样相对风速就不会干扰压力测量。这对于飞机来说很重要
CommTech 在其 Claw RF 抑制系统下提供 Defeat 技术和 Passive RF Detect,该系统包括先进的 SDR 源多波段 RF 抑制器和同轴安装的定向天线,可选择性地击败目标 UAS C2 通道。在下一代 953 硬件平台上运行的无人机检测应用程序提供自动无人机和无人机控制器 RF DETECT、测向、跟踪和地理定位(当使用多个传感器时)。RF 传感器使用现场可升级的无人机检测器库来自动识别具有高拦截概率和低误报概率的无人机/控制器类型。
MIL-DTL-3643B 2003 年 11 月 25 日 取代 MIL-C-3643A 1961 年 2 月 21 日 详细规范 连接器、同轴、射频、HN 系列、和相关配件、一般规范 本规范经批准可供国防部所有部门和机构使用 1. 范围 1.1 范围。本规范涵盖防风雨、HN 系列射频同轴连接器和相关配件的一般要求。这些连接器的标称阻抗为 50 欧姆,工作电压为 1,500 伏均方根,标称工作频率范围为 0 至 10,000 MHz(见 6.1 和 6.3)。 1.2 分类。 1.2.1 类型名称。连接器和相关配件的类型名称源自 MIL-STD-196 中规定的 AN 命名系统(见 3.1 和 6.2)。1.2.2 零件或识别号 (PIN)。PIN 由适用的“UG”名称组成(见 6.3)。UG-XXXX( )/U 2. 适用文件 2.1 总则。本节列出的文件在本规范的第 3、4 或 5 节中指定。本节不包括本规范其他部分引用的文件或推荐用于附加信息或作为示例的文件。尽管已尽一切努力确保此列表的完整性,但文档用户仍需注意,他们必须满足本规范第 3、4 或 5 节中引用的所有指定要求,无论这些要求是否列出。有关本文件的评论、建议或问题应发送至:哥伦布国防供应中心指挥官,收件人:VAI,邮政信箱 3990 East Broad Street,哥伦布,俄亥俄州 43216-5000,或发送电子邮件至 RFConnectors@dscc.dla.mil 。由于联系信息可能会发生变化,您可能需要使用 ASSIST 在线数据库(网址为 www.dodssp.daps.mil)验证此地址信息的最新情况。
VideoScout® 是视频处理、利用、传播 (PED) 和管理系统系列,旨在捕获、显示、利用、传播和管理来自各种有人和无人传感器的关键视频情报。VideoScout®-移动通信,第三代 (VS-MC3) 进一步扩展了 VideoScout® 系统系列,为用户提供了环保、便携、远程视频利用和管理系统,当需要移动性并且尺寸、重量和空间限制至关重要时,该系统可减轻对额外设备的需求。VS-MC3 包括一个安全的 UHF、L、S、C-Low、C-High、Ku-Low 和 Ku-High 频段收发器,支持任何长度的现成同轴天线电缆,最大插入损耗高达 15 dB(大约 100-500 英尺,取决于电缆类型)。
凝固点检测系统提供自动化样品测试,其精度和重复性符合 ASTM D1177、D1655、D2386、D5901 和相关国际规范。样品在测试室中冷却并不断搅拌。精密的动态测量系统每 0.5°C 从位于测试样品上方的同轴光纤电缆发出一次光脉冲。然后,光脉冲从光纤的镜子反射到光学传感器。先进的软件包分析光脉冲的响应。通过光散射监测结晶的初始出现。然后加热样品,并将碳氢化合物晶体消失的温度记录为凝固点。无论样品颜色如何,所有清澈透明的燃料都可以通过检测系统轻松测量。
我们通过环形梁研究表面极化子的辐射,该环形梁同轴封闭了一个圆柱形波导,该波导被均匀的介质包围。通过使用绿色二元组,电磁电位以及电磁场在波导的内部和外部。对于圆柱体内外的介电渗透率的一般情况,能量损失的表达是得出的。在与表面极化子辐射相对应的光谱范围内进行了全面分析。对于梁速度的中间值获得了光谱分布中的最高峰。在透明培养基的极限中,辐射表面极化子的光谱是离散的,相应的频率由圆柱波导的特征值方程确定。的数值示例。
摘要:姿态计量(滚转、俯仰和偏航)在许多不同领域发挥着重要作用。与俯仰角和偏航角相比,滚转角被认为是角位移中最难测量的量,因为滚转角的旋转轴与探测光束平行。在本文中,提出了一种灵敏度增强的滚转角传感器。其原理基于传感单元(四分之一波片)的偏振变化。通过 Mueller 矩阵形式分析了偏振模型。斯托克斯参数由斯托克斯偏振计检测。新颖的同轴设计通过固定的四分之一波片提高了灵敏度并降低了光学系统对准的复杂性。所提出的传感器提供了一种简单的装置来测量滚转角,具有 0.006 ∘ 的高灵敏度和 180 ∘ 的长无模糊测量范围。
2.1 研究动机 ................................................................................................................................................ 11 2.2 最新技术 ................................................................................................................................................ 12 2.3 本研究贡献 ................................................................................................................................................ 13 2.3.1 使用现代工具对四轴飞行器进行动态建模 ............................................................................................. 13 2.3.2 四轴飞行器的系统控制 ............................................................................................................................. 14 2.3.3 触觉系统控制 ................................................................................................................................ 14 2.4 直升机 VS 其他飞行原理 ............................................................................................................................. 14 2.4.1 短距 VTOL 配置比较 ............................................................................................................................. 15 2.4.2 未来无人机的 VTOL 配置 ............................................................................................................. 16 2.4.2.1 同轴配置 ................................................................................................................................ 16 2.4.2.2 四轴飞行器配置........................................................................................................... 17 2.5 什么是触觉技术? ...................................................................................................................................... 17 2.5.1 触觉系统控制的相关研究 ........................................................................................................ 18 2.5.2 触觉控制器 ................................................................................................................................ 19 2.5.3 触觉控制器的应用 ...................................................................................................................... 20 2.6 结论 ...................................................................................................................................................... 22