在目前的工作中,通过[3+2]氮氧化物与碱的二氧化吡喃唑 - 螺旋螺旋衍生物合成了一系列二氧化吡喃唑 - 螺旋螺旋衍生物,用于合成一系列二甲苯和三替代的吡唑螺旋螺旋衍生物,用于合成一系列二氧化吡喃唑 - 螺旋螺旋衍生物,用于合成一系列碘介导的,无金属的途径。所有合成的氧唑衍生物均以FTIR,1 H NMR,13 C NMR和HRMS数据为特征。通过X射线分析证实了其中一种产品的结构,即乙基-3-(1,3-二苯基-1-4-吡唑-4-基)-5-苯基异恶唑-4-羧酸盐。将所有合成化合物均筛选为抗菌活性,并与标准药物Amoxicillin进行比较。某些化合物表现出与阿莫西林相当或更高的抗菌活性。此外,合成化合物表现出中度至优异的抗氧化活性。针对小鼠成纤维细胞(动物)和植物种子发芽细胞系(Vigna radiata)研究了所有产物的细胞毒性。
1.简介肺癌是世界上最常见且最致命的癌症之一,临床上一般分为小细胞肺癌(SCLC)和非小细胞肺癌(NSCLC)两种类型。NSCLC 通常诊断时已是晚期,大多数患者无法通过手术切除。化疗和放疗是 NSCLC 的其他治疗策略,但其效果相对不足。此外,化疗降低了患者的生活质量,导致意外死亡和生存率低。因此,已经开发出新的治疗选择,例如使用先进的细胞和分子方法的靶向治疗。该疗法针对在基因表达、细胞凋亡和细胞周期中起关键作用的特定致癌基因和信号通路。近年来,特异性酪氨酸激酶 (TK) 抑制剂的开发以及在分子水平上对这些药物的检验已导致 NSCLC 治疗发生根本性变化 [1–4]。
一般建议:对于事故或您感到不适的话,请立即寻求医疗服务。当症状持续或在所有有疑问的情况下,请寻求医疗建议。如果吸入:如果吸入,请卸下新鲜空气。如果出现症状,请接受医疗护理。在接触皮肤的情况下:用水和肥皂洗涤。如果出现症状,请接受医疗护理。如果要进行眼神接触:如果接触,请立即用大量水冲洗至少15分钟。如果易于执行,请删除隐形眼镜(如果磨损)。获取医疗护理。如果吞咽:如果吞咽,请不要引起呕吐,除非医务人员指示这样做。获取医疗护理。用水彻底冲洗嘴。永远不要用嘴巴给一个无意识的人。最重要的症状和影响,包括急性和延迟
参与癌症发展和进展的细胞过程。30 – 33因此,已设计和合成了许多杂环衍生物,以用作抗癌剂。在这些结构中,五元杂环,例如吡唑、噻唑和噻二唑,是特别重要的化合物。34 – 37吡唑环作为具有两个相邻氮原子的五元杂环,存在于具有不同用途的广泛化合物中。此外,众所周知,吡唑,无论是天然存在的还是合成的,都具有广泛的生物学特性(图 1 中给出了一些具有生物活性的吡唑)。38噻唑部分是一种重要的芳香族五元杂环。其独特的生物学特性是由硫和氮原子决定的,噻唑骨架存在于 18 种以上经 FDA 批准的药物中。39 研究表明,含噻唑的化合物具有多种生物学特性,如抗真菌、40 抗菌、41 抗癌、28 利尿、42 抗炎、43 镇痛、44
摘要 - 当前的论文围绕新合成的生态友好的吡唑衍生物的进行,N - ((3,5二甲基-1H-1H-吡唑-1-甲基)甲基)-4-硝基苯胺(L5),作为碳钢(CS)的腐蚀剂(CS)在摩尔羟基含量(CS)中。化学和电化学技术,即减肥测量(WL),电力动力学极化(PDP)和电化学障碍光谱光谱(EIS)均用于评估L5分子的效率,以及量子化学方法。有机化合物被确认为良好的抗腐蚀化合物,在10 -3 m时最大抑制效率(IE%)为95.1%。根据PDP结果,抑制剂L5可作为混合型抑制剂。对温度影响的评估表明,L5在CS上化学吸附。L5在CS表面上的吸附似乎遵循Langmuir模型。扫描电子显微镜(SEM-EDX)和紫外可见度揭示了屏障膜的构成,限制了腐蚀离子进入CS表面的可及性。理论研究
Kress于1995年加入了过程研究小组中的高级研究化学家,他的研究重点是开发默克糖尿病和疼痛特许经营中各种药物开发目标的有效合成过程。加入Cephalon,Inc。后,Kress于2007年返回默克公司,担任制药开发执行董事,并晋升为制药研究与开发副总裁。在药品开发任职期间,他支持关键开发计划和糖尿病,睡眠障碍和乙型肝炎的产品发射。自2021年以来,Kress领导了开发科学和临床供应,将药物药物,药物,分析和临床供应功能带入一个组织。
摘要:一系列新系列的噻唑基吡唑啉衍生物(4A - D,5A - D 6A,B,7A - 7A - D,8A,B和10A,B)通过噻唑和吡唑啉部分的组合设计和合成,从关键建筑物的组合组合,从关键建筑物开始,从吡唑啉甲氨基甲甲基甲酰胺(1A)(1A)(1A)(1A)(1A)(1A)。这十八种衍生物的设计按预期的EGFR/HER2双重抑制剂设计。使用乳腺癌MCF-7细胞系评估了开发化合物在抑制细胞增殖中的效率。在与Lapatinib(IC 50 = 5.88 µM)相比,新合成的噻唑基-吡唑啉在新合成的硫基酚基吡唑啉,化合物6a,6b,10a和10b中表现出有效的抗癌活性,IC 50 = 4.08、5.64、3.37和3.54 µm。此外,还以最多的细胞毒性化合物(6a和6b)向EGFR和HER2进行酶法测定,以证明其双重抑制活性。他们揭示了与Lapatinib(IC 50 = 0.007和0.018 m)相比,他们分别揭示了具有IC 50 = 0.024和0.005 µM IC 50 = 0.024和0.005 µm的EGFR的有希望的抑制作用。分别通过在G1和G1/S相处阻止MCF-7细胞系的细胞周期来诱导6A和10A诱导凋亡。对有希望的候选6A和10A的分子建模研究表明,它们与至关重要的氨基酸形成了EGFR和HER2抑制的重要结合,从而支持了体外测定结果。此外,对研究中的化合物进行了ADMET研究预测。
这项工作中使用的化学物质是商业购买的。元素分析是通过勒克瑙CDRI的微分析确定的。使用溴化钾托盘,将FTIR光谱记录在BrukerαTFT-IR分光光度计上。使用Varian Carry 5000,UV/VIS/NIR分光光度计记录电子光谱。使用TBAP用TBAP作为支撑电解质,用Epsilon Basi循环电压表确定化合物的电化学性能。使用电气操作的熔点装置对化合物的分解温度进行监测,其加热能力高达360ºC。理论研究,即研究化合物的分子几何参数和振动特性,前沿分子轨道(FMOS)以及分子静电势表面(MEP)(MEPS)使用B3LYP/ LANL2DZ组合进行了密度功能理论(DFT)。使用高斯09软件包进行DFT计算。
近年来,原位和原位同步辐射高分辨率粉末X射线衍射(HR-PXRD)实验已被认为是一种强有力的工具,可以揭示各种无机、[17,23,24]有机、[25,26]和金属有机多孔材料中的主要相互作用和主要吸附位点[16,20–22]。[15,16,27,28]尽管有这些例子,但迄今为止获得的信息仅限于客体分子的定位和主体框架的修改。直到最近,[16,17,29]才有人努力模拟和理解整个吸附过程,包括构建吸附等温线。然而,这种方法还没有发展到极限,除了晶体结构测定、主体-客体相互作用描述和客体量化之外,还不能研究其他性质,如吸附过程的热力学。在这项工作中,我们展示了可以从目前尚未充分利用的 PXRD 数据中提取大量隐藏但易于获取的信息
在近年来,原位和操作同步辐射高分辨率高分辨率X射线衍射(HR-PXRD)实验已被认为是公开主要相互作用和原发性吸附位点的强大工具[16,20-22] [16,20-22],在不断范围内[17,23,23,24] [17,23,24] [17,23,24],[17,23,26] [25,26] [25,26] [25,26] [25,26] [25,26] [25,26] [25,26] [25,26] [25,26] [25,26] [25,26] [25,22][15,16,27,28]尽管有这些示例,但到目前为止获得的信息仅限于来宾分子的定位和宿主框架的修改。直到最近,[16,17,29]为建模和了解整个吸附过程,包括吸附等温线的结构。然而,这种方法尚未扩展到极限,超出了晶体结构的确定,宿主 - 具型相互作用的描述和来宾定量,以研究其他特性,例如吸附过程的热力学。在这项工作中,我们表明可以从如今的pxrd Data