“ USDW被有毒的重金属,胶体或其他颗粒物污染,如果在产生和使用地下水的人,动物和植物环境中,从内部或USDW内部或进入USDW中溶解和/或动员了”;
Ogallala含水层是一个天然的地下水库,位于大平原的1,1100万英亩的地区,包括怀俄明州的部分地区,南达科他州,内布拉斯加州,堪萨斯州,堪萨斯州,堪萨斯州,科罗拉多州,俄克拉荷马州,俄克拉荷马州,德克萨斯州,德克萨斯州和新墨西哥州。约有190万人依靠含水层进行市政和工业供水,而Ogallala是建立该地区繁荣的农业经济的关键。除了人类用途之外,含水层对大平原的生态健康也至关重要。在低降水量和干旱时期,含水层的地下水会进食地表水无法维持的小溪和溪流。预计,随着时间的流逝,管理Ogallala的许多复杂方面只会变得更加困难,因为越来越热的夏天会导致含水层对水的需求增加。需求已经超过了其充值率。预期的结果将是含水层进入未来的逐渐减少(USGS,2018年)。
结构和地层捕获:CO 2以类似于天然气的方式物理捕获在不可渗透的岩石层下。残留捕获:CO 2分子由于毛细管而被困在岩石的孔隙中。溶解度捕获:地下水中溶解的CO 2形成了一种略密度的溶液,该溶液向下移动,远离大气。
●然后,在2016年,在伊利诺伊州费舍尔(Fisher Illinois)附近,从人们的天然气拥有的燃气存储设施中泄漏了甲烷进入Mahomet含水层。气体污染的井远至Mahomet(城市)。八年后,在新的供水的设计上花费了数百万美元,但受影响的居民仍然依靠瓶装水进行日常使用。
技术描述 在含水层热能存储 (ATES) 中,多余的热量被储存在地下含水层中,以便在后期回收热量。热能被储存为温暖的地下水。地下水还用作将热量传输到地下和从地下传输热量的载体。因此,热能通过从含水层通过井生产和注入地下水来储存和回收。ATES 系统的容量范围从 0.33 MW 到 20 MW(Fleuchaus 等人,2018 年)。通常,ATES 按季节运行。夏季,来自燃气或燃煤发电厂、太阳能发电厂或热电联产厂的多余热量通过热交换器转移到冷地下水中。由此产生的温暖地下水将热量输送到含水层,热量在那里储存起来。在冬季,ATES 通过逆转生产井和注入井中的流量以相反的方向运行。现在,通过热交换器从温暖的地下水中回收储存的热量并用于供暖,而将产生的冷地下水重新注入含水层。通常,注入井和生产井之间的距离在 1000 米到 2000 米之间(Stober 和 Bucher 2014)。含水层的深度也各不相同。例如,在柏林,ATES 的深度在浅层含水层中为 30 米到 60 米之间,而在诺伊鲁平,深度约为 1700 米。在荷兰,大多数 ATES 系统使用地下深度在 20 米到 150 米之间的含水层(Bloemendal 和 Hartog 2018)。与深度相对应,热存储以不同的温度运行。低温 (LT) ATES 的运行温度低于 30°C,通常位于浅层含水层;中温 (MT) ATES 指的是 30°C 至 50°C 之间的温度范围;高温 (HT) ATES 的运行温度为 50°C 及以上(Lee 2013)。与 MT 和 HT-ATES 相比,由于 LT-ATES 中的温度较低,因此使用热泵将温度升高到加热相关建筑物所需的水平,例如 40°C。同时,抽取的地下水被冷却到 5°C 至 8°C 之间的温度。随后,将冷地下水重新注入冷井。夏季,可以使用冷井中的地下水有效地为建筑物降温。由于热泵的冷却过程,该水被加热到 14°C 至 18°C 之间的温度范围。随后,加热的地下水通过暖井储存在 LT-ATES 中,以便在冬季回收。如果冷却不需要在前一个冬季储存的低温地下水附近安装任何设施,则称为免费冷却。当多余的热量
摘要 含水层热能存储 (ATES) 是一种节能技术,通过在含水层中存储热水和冷水来为建筑物提供供暖和制冷。在对 ATES 需求量大的地区,ATES 的采用导致了含水层的拥堵问题。通过减少相同温度的井之间的距离,可以增加含水层中存储的热能回收量,同时保证单个系统的性能。虽然这种方法在实践中得到了实施,但对其如何影响回收效率和所需的泵送能量的理解仍然缺乏。在本研究中,量化了井位对单个系统性能的影响,并制定了规划和设计指南。结果表明,当将相同温度的井的热区组合在一起时,单个系统的热回收效率会提高,这是因为发生损失的热区表面积减少。发现存储量小且井筛长的系统热回收效率提高幅度最大。对于储存量为 250,000 立方米 / 年的中等规模系统,热采效率相对增加 12%,对于小型系统(50,000 立方米 / 年),热采效率相对增加 25%。根据热采效率增加与泵送能量增加之间的权衡,同温井之间的最佳距离为热半径的 0.5 倍。相反温度的井之间的距离必须大于热半径的三倍,以避免产生负面相互作用。
对含水层热量储存(ATE)中技术的描述,在地下含水层中存储过多的热量,以便在以后恢复热量。热能被存储为温暖的地下水。地下水也被用作载热到地下的载体。因此,热能是通过从含水层从含水层从含水层从含水层中生产和注入地下水来存储和回收的。ATES系统的容量从0.33 MW到20 MW(Fleuchaus等人2018)。通常,ATES是季节性的。在夏季,通过热交换器转移到寒冷的地下水中,来自天然气或燃煤发电厂,太阳能或热电联产厂的过量热量被转移到寒冷的地下水中。由此产生的温暖地下水将热量运输到含热量的含水层中。在冬季,通过逆转生产和注入井的流量,将ATES运行相反的方向。现在,通过热交换器从温暖的地下水中回收了存储的热量,并用于加热目的,而所产生的冷地下水则在含水层中重新注射。通常,注入和生产井之间的距离在1000 m至2000 m之间(Stober and Bucher 2014)。含水层的深度也有所不同。在柏林,例如,在浅水含水层中,ATE的深度在30 m至60 m之间,而在Neuruppin中,它约为1700 m。在荷兰,大多数ATES系统在地下中使用20 m至150 m之间的含水层(Bloemendal和Hartog 2018)。过多热量与深度相对应,在不同温度下进行热量储藏。低温(LT)ate在30°C以下运行,通常位于浅含水层中,中等温度(MT)ates是指在30°C和50°C之间的温度范围和高温(HT)ATES在50°C和更高的温度(Lee 2013)下运行(Lee 2013)。与MT-和HT-ates相比,由于LT-ates的低温,热泵可将温度提高到加热相关建筑物(例如40°C)所需的水平。同时将提取的地下水冷却至5°C和8°C之间的温度。随后,将冷地下水重新注入冷井中。在夏季,可以使用寒冷井中的地下水有效冷却建筑物。由于热泵的冷却过程,该水被加热到14°C和18°C之间的温度范围。随后,加热的地下水是通过LT-ates的温暖井来存储的,以便冬季以后恢复。如果冷却在上一个冬季存储的低温地下水旁边不需要设施,则称为免费冷却。
1)通常与热泵结合使用的低温含水层热能储存(LT-ates),导致冷井的注射温度在5°C和10°C之间,在温暖井中在13°C到30°C。在地下水中非常有效的直接冷却是使这种存储在经济上具有竞争力的原因。2)用于大规模热储存的高温热能储存(HT-ATS),在40至90°C之间的热井中注射温度。“冷”井的注入温度可以在5°C至60°C之间,具体取决于土壤组成以及输送系统的需求/限制。Ates需要一个适合渗透率条件的含水层,该含水层可以提取和注入地下水。要进入地下水,需要在目标含水层的穿孔屏幕上安装管井。电潜水泵(ESP)用于提取和注入地下水。ATES系统可用于每小时或每日周期。每个井的功率输出受局部地质条件和所施加温度范围的限制。与其他技术(例如储罐存储(TTE))的组合可以在任何必要的地方补偿有限的功率输出。