二氧化碳(CO 2)泄漏是一个紧迫的环境问题,是由各种工业过程引起的,尤其是与化石燃料的提取和存储相关的过程。在这些操作期间,CO 2的无意释放可能会对环境和人类健康产生不利影响[1]。CO 2泄漏可能是由于多个因素而发生的,包括井的完整性不足,地下存储库中的断层或断裂,以及运输管道中的失败[2-4]。在碳捕获和存储(CCS)的背景下,涉及捕获CO 2来自发电厂和工业设施的CO 2排放,并将其存储在地下,泄漏可能是由于存储现场选择不当,监测不良或注射或存储操作期间的人为错误而导致的[5]。将CO 2注入深盐水含水层为大规模和长期存储二氧化碳提供了巨大的潜力。这些含水层以其高存储能力和广泛的分布为特征,被认为是CO 2存储的最有希望的地质地层之一[6]。在世界范围内的CO 2隔离的潜在位置如图1。已经研究了波罗的海盆地中CO 2存储的不同方面,从孔隙尺度建模到基于仿真的存储评估[7,8],显示出明显的CO 2存储潜力。这些储层中存在故障和断裂在维持存储系统完整性和防止CO 2泄漏方面引入了挑战,请参见图2,其中显示了CO 2存储期间可能泄漏的概念图。先前的研究还表明,故障和断裂网络可以显着影响深盐水含水层内CO 2的迁移和遏制[2-4]。CO 2泄漏的后果是深远的,并且涵盖了环境,经济和公共卫生的影响。环境后果包括水体的酸化,
约克郡和亨伯地区包含英国一些最大的CO 2发射器。英国北海(SNS)包含许多气田和盐水含水层,可以为某些CO 2提供存储。国家电网碳(NGC)计划通过共享的24英寸管道将这些来源和下沉的枢纽和插管连接,称为“亨伯集群项目”。使用多客户地震调查和释放井数据的数据库进行了数年的高水平研究之后,选择了约25 km的长度和8 km宽度,并选择了275 m厚的Bunter砂岩形成(Saline Aquifer),以详细分析。在1970年和1990年钻了一个称为5/42的结构中的两个Crestal井,寻找碳氢化合物,但仅发现盐水。在两个井中都获取了基本的形成评估日志。有限的核心和压力数据是在1990年的井中获取的。没有任何水分分析的记录,核心和日志覆盖范围有限。截至2012年中期,关于CO 2处置的5/42的适用性仍然存在一些不确定性。对盖岩石的强度和渗透性知之甚少,盖岩石的强度和渗透性由10-12 m的页岩覆盖在大约80 m的Halites和泥石上。尽管该结构似乎明确,并且在邦特砂岩中没有看到重大断层,但几乎没有储层渗透率数据,尤其是垂直渗透性。此外,在5/42中没有进行流动测试,生产或注入。©2013作者。由Elsevier Ltd.在GHGT的责任下选择和同行评审。为了解决这些问题,该公司于2012年11月申请了英国政府的第一届碳存储许可证,该公司在2013年夏季允许在欧洲委员会(通过其EEPR计划)和英国能源技术学院(ETI)慷慨的财政支持,于2013年夏季钻探评估井42/25d-3。
摘要。含水层具有独特而高度适应的物种,有助于关键的生态过程和服务。了解含水层中驱动无脊椎动物的关键因素是一项具有挑战性的任务,传统上这主要是在喀斯特实现的。这项研究旨在解除影响意大利中部火山含水层中地下水甲壳类动物(尺寸为0.036至1 mm)的组成和功能的因素。含水层由三个相邻的含水层单元(AUS)组成,显示不同的地球化学(即硫酸盐耗尽的,富含K的K和碱性)。我们采用了一种多学科的方法,整合了水文地质,地质,微生物学和生态学,以确定在生物逻辑组合中我们在三种AU中强调的环境差异是否得到了反映。,我们在三种AUS的地面甲壳类动物的分类学和功能组成中揭示了显着差异,并且在整个调查期间,这些模式均保持一致。值得注意的是,耗尽硫酸盐的AU缺乏地下水的物种,藏有洞穴和stehothermal和中等st骨的物种。富含K和碱性的AUS具有不同的物种;但是,这些物种表现出与运动,饮食和喂养习惯有关的相似功能。Stenothermal
含水层既可以限制和不受限制。无限制的含水层通常是浅的。在不受限制的含水层中,地下水位是含水层的顶部,仅受大气压力(就像地表水一样)。限制的含水层通常要深得多,并受到从上方和下方的密集岩石的限制,从而将地下水流入或流出含水层。这可能导致含水层超出大气压力。
c) 剖面 A – A*。剖面图中显示的 Riegel Horizon (RH) 未在数值模型中考虑。数据来自 GDI-BW (2015)、Geofabrik (2022)、USGS (2017)。水头数据来自弗莱堡环境保护局和巴登-符腾堡州环境、调查和自然保护研究所 (LUBW)。剖面图根据 Wirsing 和 Luz (2005) 修改。
引用(APA)Hoekstra,N.,Pellegrini,M.,Bloemendal,M.,Spaak,G。,Andreu Gallego,A.,Rodriguez Comins,J.,Grotenhuis,T.通过含水层热能存储中的创新来增加可再生能源技术的市场机会。总环境科学,第709条,第136142条。https://doi.org/10.1016/j.scitotenv.2019.136142引用此出版物的重要说明,请使用最终公开版本(如果适用)。请检查上面的文档版本。
摘要:浅层开环地热系统通过双抽水井和回注井在含水层中产生热和冷储备。布鲁塞尔市中心的三栋相邻建筑采用了这种含水层热能存储 (ATES) 系统。其中两栋建筑利用了由新生代砂岩组成的同一含水层,分别于 2014 年和 2017 年开始运营。Bult é 等人 (2021) 开发的先前水文地质模型表明,其中一个系统的热不平衡如何危及该上部含水层的热状态。在这里,研究并模拟了与位于古生代基岩深层含水层中的较新的第三个 ATES 系统的相互作用。在根据两个含水层的地下水流条件进行校准后,使用 3D 水文地质模型来模拟两个开发含水层中的三个地热装置的累积效应。模拟结果表明,尽管两个含水层之间的水力相互作用非常弱(如观察到的不同电位水头所示),但两个含水层之间通过隔水层进行热交换。幸运的是,这些热交换不足以对单个地热系统的效率产生重大影响。此外,这项研究清楚地表明,在下层含水层中增加第三个系统,在 10 月至 3 月期间平均加热功率为 286 kW,在 4 月至 9 月期间平均冷却功率相同,是有效的。
Natacha B. B. Bernier A, *,Mark Hemer B,Nobuhito Mori C,Christian M. Oleksander Huizy,Jennifer L. Irish M,Kirezci N的Ebru,Nadao Kohno,Jun-Whan Lee P,Jun-Whan Lee P,Kathleen LMartha Marcos S,Reza Marsooli S,Ariadna Oliva U,Menendez Menendez,Moghimi Saeed AB,Val Swail,Tomoya C
在过去十年中,Flathead Valley的人口增长了25%以上,目前约有70,000,除白鱼外,所有这些人都依靠地下水。Flathead山谷中的深层含水层是一块厚厚的沙子和砾石沉积物,其深度为从陆地表面以下75到300英尺不等的深度;它是山谷中使用最多的含水层,除了成千上万的家庭井外,还提供高容量的市政和灌溉井。持续的增长和深层含水层中的局部水平下降引起了人们对供水的长期可持续性的关注。这项调查将在整个山谷的战略地点安装一系列井,以表征地质框架,以及地表水,浅水含水层和深处的含水层之间的水文关系。井将用于执行测试,以定义含水层的传播特性并评估含水层存储的变化。含水层脆弱性将通过有针对性的水化学采样和地下水年龄来评估。新项目数据以及地下水/表面水高程数据将用于构建地下水流量模型。流程模型将用于模拟地下水系统对泵送,气候和组合变化的响应。该模型和全面的解释性报告将向水上用户,经理,监管机构和科学家公开公开。有关此项目的更多信息,请联系:John Wheaton水文地质学家406.496.4848 jwheaton@mtech.edu