Ag/PEG/PVA纳米复合材料,其中将银纳米颗粒(AGNP)掺入PEG/PVAMATRICES中,以不同的时间间隔(0、4、7、7、10和13分钟)合成。使用透射电子显微镜(TEM)和X射线衍射分析(XRD)吸光度测量的分析证实了AGNP与PEG/PVAMATRIX的键合,这表明,较长的生长时间为银纳米颗粒提供了更多的机会聚集。此外,使用X射线衍射的分析表明,AGNP具有以面部为中心的立方结构的结构。在这项研究的最后一部分中,合成的纳米复合材料显示出针对大肠杆菌和金黄色葡萄球菌的强抗菌特性,其大抑制区为68 mm。k e y w o r d s
分子光谱是分子与电磁辐射相互作用时的电子,振动和旋转激发的分析。它被广泛用作识别和表征材料定量和定性分析的分子的工具。摩尔的光谱是入射电磁辐射的测量吸收或发射。每个分子都为特定的光谱法产生独特的光谱,从而使光谱被用作分子的ngerprint。红外(IR)光谱法是一种光谱技术,它阐明了改变其偶极矩的分子的振动模式。1这些振动模式导致摩尔数在红外线区域吸收电磁辐射,该区域位于波数4000 - 400 cm-1的范围内。官能团在1500 cm - 1以上的峰区域中具有独特的吸光度,称为功能组区域。2
从微藻中提取的富含胞外多糖 (EPS) 的提取物具有广泛的生物活性,包括抗菌和抗真菌特性。然而,这些特性因微藻种类、所用的抗菌检测方法和所选的目标微生物而异。这项研究旨在调查从五种很少在此方面研究的微藻中获得的富含胞外多糖的提取物的抗菌特性。本研究选定的目标微生物包括革兰氏阳性菌 (枯草芽孢杆菌) 和革兰氏阴性菌 (铜绿假单胞菌)、真菌 (枝孢菌) 和微藻 (小球藻)。使用扩散测定法、肉汤微量稀释测定法和使用吸光度的生长测量来比较方法并充分评估抗菌特性。使用吸光度测量,对于至少一种富含 EPS 的微藻提取物,所有目标物种的生长率抑制率至少达到 80%。在 500 mgGlcEq · L − 1 的浓度下,枯草芽孢杆菌的活性提取物大部分来自莱茵衣藻(生长抑制率 87.1%)、普通念珠藻(53.7%)和多色紫球藻(46.4%)。发现莱茵衣藻(86.2%)、普通念珠藻(59.9%)和紫球藻(31.1%)的富含 EPS 的提取物对铜绿假单胞菌最有效。微绿球藻(86.0%)、莱茵衣藻(16.6%)和多色紫球藻(17.8%)的 EPS 提取物的抗真菌活性最高。结果表明,富含 EPS 的 N. commune 提取物(99.3%)、C. reinhardtii 提取物(84.8%)和 M. gaditana 提取物(84.1%)可抑制微藻生长。据我们所知,这项研究首次探索了富含 EPS 的微藻提取物的杀藻特性,为未来研究其潜在应用确定了有希望的候选物。
注意:样品的核酸浓度通过其在260 nm处的紫外吸光度计算,其中1(1 cm路径长度)等于50μlDNA/mL。对RNA,蛋白质,盐,乙醇或其他非核酸污染物的污染有助于在260 nm处的总吸收,因此导致对真实DNA浓度的高估。使用紫外光谱法测量时,A260/A280的比率在1.80–1.90和A260/A230> 1.8之间表示纯DNA。A260/A280和A260/230比2.0以上的比率表示RNA污染。相反,A260/A280比1.8低于1.8表示蛋白质污染。另外,低A260 / A230比表示存在腐殖酸以及蛋白质,糖,乙醇,盐和其他污染物,这些污染物可能会抑制后续的酶促反应。
NP的形成及其化学成分。NP悬浮液,以在Malvern Zetasizer仪器(Malvern Panalytical Ltd,英国)中使用动态光散射(DLS)方法来确定颗粒的平均大小,分布和Zeta势,并在室温和90°的散射角度确定。使用扫描电子显微镜(Tescan Orsay Holding,Brno-Kohoutovice,Czech Republic)在15kV加速电压加速电压后评估了干燥NP的形态特征。通过读取RSV的吸光度来计算RSV捕集效率(EE)。CS NP悬架(总RSV)和无NP上清液(免费RSV)在Unico 2800 UV/可见分光光度计机器(UNICO,UNICO,DAYTON,NJ,NJ,NJ)中为310 nm。EE是根据以下等式计算的:
图。2。(a)∆ε2 2,s u(1,1)(点破的线)和等式。(a.39)(实线)作为第二次挤压参数的函数,用于内部损失。我们观察到,对于较大的第二次挤压参数,∆ε2 2,s u(1,1)会收敛到等式。(A.39)。(b)∆ε2 2,s u(1,1)的对数,对于非常大的第二次挤压参数作为第一个挤压参数和光子数的函数。洋红线线绘制了第一个挤压参数的最佳状态,其相应的光子编号。(c)在SU(1,1)(1,1)(1,1)和经典的干涉仪的最佳灵敏度状态下显示了可检测到的最小的吸光度,用于一,二,三和四光子吸收过程。通过调节信噪比(A.45)成为一个,即εm / ∆εm = 1。< / div>
细胞活力评估使用细胞计数试剂盒-8(CCK-8;Beyotime)评估PPV对PK-15细胞活力的影响。将细胞接种到96孔板中,每孔约10,000个细胞。孵育4小时后,更换培养基。随后,设置3个没有细胞的空白孔,保留3个有未感染细胞的孔(对照),向另外3个有细胞的孔中加入1个感染复数(MOI)的PPV。继续孵育24和48小时。然后,吸出培养基,加入100μL新鲜的无血清培养基和10μL CCK-8溶液。然后将细胞在细胞培养箱中孵育1小时。使用酶标记物在 450 nm 处测量吸光度值,并使用以下公式计算细胞活力:细胞活力 (%) = [A (PPV) − A (空白)]/[A (对照) − A (空白)] X 100。
注意:样品的核酸浓度是根据260 nm的紫外吸光度计算的,其中1(1 cm路径长度)等于50μlDNA/mL。对RNA,蛋白质,盐,乙醇和腐殖酸或其他非核酸污染物的污染促成260 nm处的总吸收,因此导致实际DNA浓度高估。使用紫外光谱法测量时,A260/A280的比率在1.80–1.90和A260/A230> 1.8之间表示纯DNA。A260/A280和260/230比率高于2.0的比例表示RNA污染。相反,A260/A280比1.8低于1.8表示蛋白质污染。此外,低的A260 / A230比表明腐殖酸可能存在,还可能存在蛋白质,糖,乙醇,盐和其他可能抑制后续酶促反应的污染物。
生化测定通常利用纯化的目标蛋白,并测量体外蛋白功能的变化,例如酶活性。这些测定通常以竞争形式进行,其中所研究的化合物必须取代已知的配体或底物。20 世纪 50 年代和 60 年代对酶和酶动力学进行的大量深入研究为精确计算化合物的效力 (IC 50 或 EC 50 ) 和功效 (% 最大反应) 提供了一种方法。在此期间,数百种酶被发现和纯化,后来成为药物发现的重要分子靶点 [5]。这些测定通常在 96、384 和 1536 孔板中进行,采用吸光度、荧光或发光等光学方法,可在测定体积、通量、成本和灵敏度之间做出平衡选择 [6,7]。
图2。(a-c) UV-vis absorption spectra (Absorbance axis on left) and emission spectra (photoluminescence = PL axis on right) of commercial or recrystallized pure compounds 2,3-DAP (commercial), 2,7-DAP, (recrystallized), and MQA (commercial) shown as solid blue and red curves, compared to the byproducts from our synthesis captured in the low molecular mass (<500 da)透析液(点缀蓝色和红色曲线),也与参考文献中CD的光谱进行了比较。[13](虚线黑色曲线)。完全匹配了2,3-DAP和MQA光谱(<2%),而2,7-DAP由于原始透析液中存在额外的杂质而在低吸光度下显示出很小的差异(请参阅表S1)。我们的P-,O-和M-CD的吸收光谱和发射光谱如图6,具有完全不同的吸收和发射最大值和形状。