频率选择表面 (FSS) 由周期性排列的一维或二维金属结构组成,由于其频率谐振特性而备受关注。FSS 可以根据其尺寸、形状、厚度和其他参数在特定频率范围内选择性地反射 (带阻) 或透射 (带通) 入射电磁波,这是 FSS 的识别特征。[1] 金属和介电材料结构被广泛用于设计太赫兹 FSS 或滤波器,因为它们具有高机械强度,有助于产生功能化设计。金属 FSS 可以通过反射或吸收电磁干扰来屏蔽,但是,制造所需结构的成本很高,并且正在被碳基材料取代,以获得高频电磁特性,具有合适的成本、重量轻、无腐蚀等特点。[2] 通常,碳基材料以 sp、sp 2 和 sp 3 键合,形成相互连接的碳-碳键的长链,从而产生不同的物理和电性能。 [3] 因此,这类材料可归类为半金属或非电介质材料(如石墨烯、石墨、碳纳米管、碳纳米纤维)[4,5],因此通过在磁场和电场中应用飞秒激光脉冲产生 THz 脉冲,其纳米复合材料可表现出 THz 光跃迁、光电特性和介电特性。[6–11] 由于存在非局域 π 键电子,这些碳基材料表现出优异的 EMI 屏蔽性能。自由移动的电子与电磁波相互作用,导致反射,在共振频率下具有最大回波损耗值。[12] 过多的电磁能量会损坏周围的电路并引起不必要的噪声脉冲。Liang 等人。报道了竹状短碳纤维@Fe3O4@酚醛树脂和蜂窝状短碳纤维@Fe3O4@FeO复合材料作为高性能电磁波吸收材料,在4-18 GHz范围内成功实现了反射损耗-10 dB。[13]然而,在文献中对碳基材料在THz范围内的表征仍然没有很好的解释,关于碳基材料FSS特性的报道很少。最近,一种利用3D打印制造的碳基FSS吸收器
上下文。原月经磁盘由于角动量保护而在其母体分子云周围形成新生恒星。随着它们逐渐发展和消散,它们也形成行星。尽管许多建模效果都专门用于它们的形成,但它们的世俗进化问题,从所谓的0类嵌入阶段到II类阶段,据信被认为是隔离的II级阶段,但仍然很熟悉。目标。我们旨在探索嵌入式阶段与II类阶段之间的演变。我们着重于磁场演化以及磁盘与包膜之间的长期相互作用。方法。我们使用GPU加速IDEFIX进行3D,正常,非理想的磁性水力动力学(MHD)世俗核心崩溃模拟,该模拟涵盖了赛车前核心的系统进化,直到第一次降低了液压核心和脉冲定位后,直到100 kyr的100 kyr降低,同时又垂直地定位了垂直的垂直和垂直的效果。 au)正确解决磁盘内部动力学和非轴对称扰动。结果。磁盘的演化导致开普勒旋转中的幂律气体表面密度,该旋转延伸至几个10 au。在初始塌陷期间,磁盘被困在磁盘中的磁性弹力从磁盘形成下的100 mg降低到1 mg,到1 mg。在第一个静水压核形成后,系统分为三个阶段。结论。第一阶段,具有较小的(〜10 au),不稳定,强烈积聚(〜10-5m⊙yr -1)磁盘,在第一阶段中失去了磁性弹力,第二阶段,第二阶段,磁性磁盘通过平稳的磁盘呈圆形,并通过囊罩的速度呈粒料,并具有感知的动量,并具有感知的动量,并具有一定的感光性,并具有一定的感光性,并具有一定的固定磁盘。 Au磁盘在几个10-7 m⊙yr -1处积聚。 初始各向同性包膜最终会进食大规模扩展的吸积流液,其吸积速与原恒星相似(〜10-6 m yr-1)。 一些流媒体材料与磁盘的外边缘碰撞并产生吸积冲击,但材料的一小部分土地在磁盘表面上没有产生任何明显的不连续性。 虽然初始磁盘尺寸和磁化是通过磁制动设定的,但自我实现最终会驱动吸积,因此磁盘最终以重力调节状态。 这种从磁制动到自我重力的演变是由于磁盘沉降后气体和磁场之间的弱耦合所致。 在I类阶段末端(B z〜1 mg)的弱磁场是磁盘中磁性频率稀释的结果,因为它从其初始相对较小的尺寸膨胀。 这种膨胀不应将其解释为粘性膨胀,因为它是由具有较大特定角度动量的大规模彩流人的新吸收材料驱动的。第一阶段,具有较小的(〜10 au),不稳定,强烈积聚(〜10-5m⊙yr -1)磁盘,在第一阶段中失去了磁性弹力,第二阶段,第二阶段,磁性磁盘通过平稳的磁盘呈圆形,并通过囊罩的速度呈粒料,并具有感知的动量,并具有感知的动量,并具有一定的感光性,并具有一定的感光性,并具有一定的固定磁盘。 Au磁盘在几个10-7 m⊙yr -1处积聚。初始各向同性包膜最终会进食大规模扩展的吸积流液,其吸积速与原恒星相似(〜10-6 m yr-1)。一些流媒体材料与磁盘的外边缘碰撞并产生吸积冲击,但材料的一小部分土地在磁盘表面上没有产生任何明显的不连续性。虽然初始磁盘尺寸和磁化是通过磁制动设定的,但自我实现最终会驱动吸积,因此磁盘最终以重力调节状态。这种从磁制动到自我重力的演变是由于磁盘沉降后气体和磁场之间的弱耦合所致。在I类阶段末端(B z〜1 mg)的弱磁场是磁盘中磁性频率稀释的结果,因为它从其初始相对较小的尺寸膨胀。这种膨胀不应将其解释为粘性膨胀,因为它是由具有较大特定角度动量的大规模彩流人的新吸收材料驱动的。
新闻稿即时发布NUS医学研究:2025年2月12日,细胞无法回收脂肪可能拼写疾病新加坡 - 脂肪分子的积累对细胞有害。新加坡国立大学(NUS Medicine)的Yong Loo Lin医学院的研究人员取得了突破性的突破性,可以通过回收重要的脂肪分子来理解我们的细胞如何保持健康。 他们的研究发表在《美国国家科学院(PNAS)》杂志论文集(PNAS)上,揭示了一种称为Spinster同源物1(SPNS1)的蛋白质如何有助于将脂肪从称为溶酶体的细胞室中输送出来。 由Nus Medicine的生物化学和免疫学转化研究计划(TRP)副教授Nguyen Nam Long领导,该小组发现SPNS1就像一个细胞守门人,可以帮助将一种称为Lysophopholipids的脂肪分子移动到溶酶体,细胞的“回收中心”。 然后将这些脂肪分子重复用于细胞功能。 SPNS11通过确保脂肪回收有效并防止有害脂肪累积来维持细胞健康至关重要。 脂肪和其他细胞材料通过三种主要途径到达溶酶体:内吞作用,吞噬作用和自噬。 在内吞作用中,该细胞通过将它们包裹在囊泡中,从外面吸收材料,从而将它们带到溶酶体中进行分解。 在吞噬作用中,巨噬细胞(例如巨噬细胞)的免疫细胞像人体的清洁人员一样,吞噬了诸如受损细胞或细菌的大颗粒,并将其发送到溶酶体。 一旦脂肪分解在溶酶体中,它们就会在细胞中发挥多种重要作用。新加坡国立大学(NUS Medicine)的Yong Loo Lin医学院的研究人员取得了突破性的突破性,可以通过回收重要的脂肪分子来理解我们的细胞如何保持健康。他们的研究发表在《美国国家科学院(PNAS)》杂志论文集(PNAS)上,揭示了一种称为Spinster同源物1(SPNS1)的蛋白质如何有助于将脂肪从称为溶酶体的细胞室中输送出来。由Nus Medicine的生物化学和免疫学转化研究计划(TRP)副教授Nguyen Nam Long领导,该小组发现SPNS1就像一个细胞守门人,可以帮助将一种称为Lysophopholipids的脂肪分子移动到溶酶体,细胞的“回收中心”。然后将这些脂肪分子重复用于细胞功能。SPNS11通过确保脂肪回收有效并防止有害脂肪累积来维持细胞健康至关重要。脂肪和其他细胞材料通过三种主要途径到达溶酶体:内吞作用,吞噬作用和自噬。在内吞作用中,该细胞通过将它们包裹在囊泡中,从外面吸收材料,从而将它们带到溶酶体中进行分解。在吞噬作用中,巨噬细胞(例如巨噬细胞)的免疫细胞像人体的清洁人员一样,吞噬了诸如受损细胞或细菌的大颗粒,并将其发送到溶酶体。一旦脂肪分解在溶酶体中,它们就会在细胞中发挥多种重要作用。最后,在自噬中,该细胞通过将它们包裹在称为自噬体的膜气泡中,清理了自己受损的部分,例如旧线粒体。此气泡与溶酶体合并,其中内容物分解并回收以保持细胞健康。一个是膜维修和维护。破碎的脂肪成分(例如磷脂和鞘脂)被重新建立和维护细胞的保护膜。脂肪也有助于能源生产,因为其中一些经过处理以为细胞的活动提供燃料。此外,某些脂肪,例如鞘氨醇1-磷酸(S1P),在细胞通信中起着至关重要的作用。这些信号分子可帮助细胞协调重要过程,例如生长,运动和生存,以确保身体顺利运转。在先前的研究中,NUS医学团队表明,如果SPNS1无法正常工作,它会导致细胞内部的脂质废物积聚,从而导致人类中称为溶酶体储存疾病(LSD)的疾病。LSD是由溶酶体回收过程中问题引起的50多个罕见遗传疾病的组。诸如Gaucher病,Tay-Sachs病,Niemann-Pick病和蓬松疾病等疾病是由细胞中的废物积累引起的,领先诸如Gaucher病,Tay-Sachs病,Niemann-Pick病和蓬松疾病等疾病是由细胞中的废物积累引起的,领先
在1 J09厅访问我们。在第二次参加Vivatech的比赛中,将于2021年6月16日至19日在巴黎举行的欧洲全球技术聚会,CNR将提供其在DeepTech的专有技术的广泛样本!从生物技术到Greentech,量子技术,氢以及体育,科学家以及CNRS和合作伙伴实验室的起点将展示未来的技术。 “CNRS在Vivatech的存在见证了组织对从其实验室中出现的初创企业的承诺,并说明了我们的自愿政策,促进了科学研究的企业家精神和技术成熟,“ Points Out CNRS主席兼首席执行官Antoine Petit。“所展示的各种项目范围反映了我们与合作伙伴进行的研究,以应对我们社会面临的挑战。从基础研究到DeepTech,CNRS是该国经济复兴的动态参与者。”今年,CNRS决定展示量子技术,氢和MedTech。在量子技术领域,访问者可以了解更多有关:Prometheus,Quandela的单光源来源,它将集成到未来的量子计算机中; C12量子电子产品的碳纳米管,这是未来量子处理器的有希望的材料;和Atlas,来自Qubit Pharmaceuticals的硅分子模拟器。氢技术将由H2Sys代表,H2SYS将展示其氢能发电机之一,而H2Pulse将为寻求过渡到氢气的公司提供测试工作台的证明。MedTech也是CNRS初创企业创建的主要领域:HealShape将呈现从患者自己的细胞中获得的3D生物打印的乳腺植入物,可以适应所有形态。墨西哥将展示其生物传感技术和基于石墨烯的绷带和斑块,特别是用于远程医疗监测伤口的愈合过程。也出现在CNRS架上,将是Lify-Air提出的连接的花粉传感器,该传感器可以预测花粉的峰值,这是为过敏个体提供救济的宝贵工具。访问者还将能够测试SportsDynalics平台,以分析来自运动表现的动态指标,除了由人工智能操作的Vibiscus的新型吸收材料外,它还提供了运动表现的动态指标。它具有节能,紧凑和多功能,甚至可以降低低频噪声。最后,机器人手在CNRS的PPRIME学院开发,每个手指各个手指都有四个关节,可以掌握不同形状的物体,并以复杂的方式操纵它们。它将在Vivatech的数字空间中展出!
具有增强的生存能力。无后掠翼设置可在高空巡航期间提供最大航程。全后掠位置用于超音速飞行和高亚音速低空突防。轰炸机的进攻性航空电子设备包括合成孔径雷达 (SAR)、地面动目标指示器 (GMTI)、地面动目标跟踪 (GMTT) 和地形跟踪雷达 (TFR)、极其精确的全球定位系统/惯性导航系统 (GPS/INS)、计算机驱动的航空电子设备和战略多普勒雷达,使机组人员能够导航、更新飞行中的目标坐标和精确轰炸。目前的防御性航空电子设备包以 ALQ-161 电子对抗 (ECM) 系统为基础,由 ALE-50 拖曳诱饵和箔条和照明弹补充,以防御雷达制导和热寻的导弹。飞机结构和雷达吸收材料将飞机的雷达信号降低到 B-52 的约 1%。ALE-50 可提供更强的射频威胁防护。B-1A。美国空军在 20 世纪 70 年代获得了这种新型战略轰炸机的四架原型飞行测试模型,但该计划于 1977 年取消。四架 B-1A 型号的飞行测试一直持续到 1981 年。B-1B。改进型 B-1 于 1981 年启动,第一架生产型于 1984 年 10 月首飞。美国空军共生产了 100 架。现役 B-1B 库存最近从 92 架减至 67 架,同时合并到空战司令部位于得克萨斯州戴斯空军基地和北达科他州埃尔斯沃思空军基地的两个主要作战基地。B-1B 于 1998 年 12 月在沙漠之狐行动中首次用于对伊拉克的作战,此后一直支持在阿富汗的持久自由行动和伊拉克自由行动。B-1B 的速度、卓越的操控性和巨大的有效载荷使其成为任何联合/合成打击部队的关键要素,能够灵活地投送各种武器或根据需要携带额外的燃料。正在进行的常规任务升级计划 (CMUP) 显著提高了 B-1B 的杀伤力和生存力。已完成的 Block D 升级包括 GPS 接收器、MIL-STD-1760 武器接口、安全互操作无线电和改进的计算机,以支持精确武器,最初是 GBU-31 JDAM。现已投入生产的 Block E 包括后续计算机和软件升级,允许同时携带混合制导和非制导武器以及 WCMD/JSOW/JASSM 集成。集成
高表面积半导体在电子和能量转换中具有多个应用。[1,2]虽然有规定的光伏设备将阳光直接转化为电力,而光化学(PEC)水分裂为利用这种可再生能源提供了替代途径。在PEC细胞中,水在催化金属氧化物界面处分解,以H 2(G)的形式存储化学能。理想的PEC细胞将具有较大的催化表面积,直接电子传输途径和最佳的阳光聚集。[3]多孔纳米结构的半控导管通过增加设备中吸收材料和光散射的量来满足这些要求。[4]然而,介孔无机3D网的制造能够控制几何和内部形态仍然是一个挑战。与传统使用的湿合成路线相比,原子层沉积(ALD)是一种广泛应用于现代电子产品的简单涂层方法。在ALD中,交替的反应物被沉积在基板上,限制了对其表面层的反应。因此,ALD可以用超高精度沉积薄膜。理想情况下,可以制备每一个ALD循环的薄膜,并且通常每循环的膜生长范围在0.01至0.3 nm之间。[5]可以通过简单地增加ALD循环的数量,以更长的沉积时间来制备较厚的层。基于纤维素的材料作为ALD模板具有吸引力,因为可以使用各种结构和表面化学材料。Kemell等。是第一个通过ALD在纤维素过滤纸上进行光催化应用的ALD模板2的模板。[6] Hyde等。在棉花斑块上表征了ALD涂层,涂上Al 2 O 3涂层来调整润湿性,以及Tino X涂层以促进细胞的粘附和生长。[7,8]对于需要孔隙率和高比表面积的应用,纳米纤维素气凝剂提供了一个具有层次 - 层次多孔结构的模板,其中可以在纳米孔中转移平均孔径到微米范围。[9,10],例如,Korhonen等。带有TIO 2的涂层纤维素纳米纤维(CNF)气凝胶,并证明了它们作为湿度传感器和油吸收剂的应用。[11]最近,Li等人。使用CNF Aerogels作为TIO 2的ALD模板,为水分拆分细胞制备毛细管光轴。[3]用毛细管湿润的电极
酶工程是增强生物催化性能并优化基于蛋白质的材料的强大方法。本研究采用祖先序列重建(ASR),合理设计和过程条件优化,以提高酶稳定性,催化效率和功能特性。探索了四个关键领域:用于手性胺合成,酶促酰胺键的形成,Baeyer-Villiger氧化选择性控制和基于蛋白质的含水材料的跨激酶工程。 为了增强来自硅杆菌pomeroyi(SP -ATA)的ω-转氨酸酶的热稳定性和底物范围,使用ASR来识别稳定突变,从而提高其工业适合性。 为酰胺键的形成,有理设计优化了铜绿假单胞菌N-酰基转移酶(PA AT),并与氯瓜羧酸还原酶还原酶(CAR SR -A)的蛋白质rugosus rugosus rugosus rugosus rugosus rugosus rugosus rugosus rugosus的腺苷酸化结构域相结合。 工程的Y72S/F206N变体显着提高了与药物相关的羧酸的转化率,为化学合成提供了可持续的替代品。 在Baeyer-Villiger氧化中,研究了过程优化以控制区域选择性。 从杆菌和节肢动物物种中工程的Baeyer-Villiger单加氧酶(BVMO)通过增加氧气的可用性,将产品分布转移到了“正常”的内酯。 用于基于蛋白质的吸水材料,patatin诱变改变了带电的氨基酸组成。探索了四个关键领域:用于手性胺合成,酶促酰胺键的形成,Baeyer-Villiger氧化选择性控制和基于蛋白质的含水材料的跨激酶工程。为了增强来自硅杆菌pomeroyi(SP -ATA)的ω-转氨酸酶的热稳定性和底物范围,使用ASR来识别稳定突变,从而提高其工业适合性。为酰胺键的形成,有理设计优化了铜绿假单胞菌N-酰基转移酶(PA AT),并与氯瓜羧酸还原酶还原酶(CAR SR -A)的蛋白质rugosus rugosus rugosus rugosus rugosus rugosus rugosus rugosus rugosus的腺苷酸化结构域相结合。工程的Y72S/F206N变体显着提高了与药物相关的羧酸的转化率,为化学合成提供了可持续的替代品。在Baeyer-Villiger氧化中,研究了过程优化以控制区域选择性。从杆菌和节肢动物物种中工程的Baeyer-Villiger单加氧酶(BVMO)通过增加氧气的可用性,将产品分布转移到了“正常”的内酯。用于基于蛋白质的吸水材料,patatin诱变改变了带电的氨基酸组成。如分子动力学模拟所证明的那样,富含LYS和ASP的变体增加了吸收吸水,这证明了酶工程在可持续吸收材料开发中的潜力。这项研究整合了计算和实验酶工程策略,以改善化学合成和功能性生物材料的生物催化,为工业生物技术和可持续材料科学提供新颖的解决方案。