在这里,我们要求一些不同的东西:我们希望供奉献者说服verifier供供者知道一些东西。供者说服verifier的x∈X还不够,因此y = f(x)。应确信verifier fifier知道这种解决方案x。我有时会在此处称x为“证人”。甚至开始构建这样的证明系统,我们首先必须回答一个哲学上的问题:“知道某事?”意味着什么?更具体地说,图灵机器“知道某事”是什么意思?在希望构建“知识证明”之前,我们需要定义知识。在这种情况下,加密摄影师为“知识”提出了非常聪明,非常自然的定义。这是事后显而易见的那些定义之一,但在您看到它之前一点都不明显。这个想法是要说一个供者“知道x”,如果它是类似的定义,可能同样适用于定义人类知识。在足够剧烈的相互作用下,可以从摊子中提取X。特别是,我们会说,如果有一种有效的算法,可以从任何贵族p ∗中“提取”证人x,从而使verifier具有良好的可能性“提取”证人x,我们会说一个交互式证明具有知识。为简单起见,我们将自己限制在供者发送第一个消息的三个移动协议中。我们会说,该协议是否可以从这对接受的成绩单中提取证人,可以满足知识的声音。这些有时称为“ Sigma协议”。在这三个移动协议中,我们可以考虑运行P ∗ for-ward以获取一个接受的成绩单(V,C,Z),然后将P ∗重新打开,直到Verifirer向其发出挑战的那一刻,然后在另一个挑战中再次进行挑战,以获得第二个笔录(V,C c',z')。
本论文由两部分组成:第一部分讨论稳定器状态及其凸包(稳定器多胞形)的性质。稳定器状态、泡利测量和克利福德幺正体是稳定器形式主义的三个基石,其计算能力受到 Gottesman-Knill 定理的限制。该模型通常通过魔法状态丰富,以获得量子计算的通用模型,称为魔法状态量子计算 (QCM)。本论文的第一部分将从三个不同的角度研究稳定器状态在 QCM 中的作用。第一个考虑的量是稳定器程度,它提供了一种测量量子态的非稳定性或魔法的工具。它为每个状态分配一个量,粗略地测量需要多少个稳定器状态来近似该状态。已经证明,当所考虑的状态是其组件最多由三个量子位组成的乘积状态时,该程度在采用张量积的情况下是乘法的。在第 2 章中,我们将证明此属性并不普遍成立,更准确地说,稳定器范围是严格乘积的。我们根据稳定器状态的一般属性得出此结果。非正式地,我们的结果表明,当字典大小在维度上呈亚指数增长时,不应期望字典在进行张量积时是乘法的。在第 3 章中,我们从资源理论的角度考虑 QCM。魔法的资源理论基于两种类型的量子通道,即完全稳定器保留映射和稳定器操作。这两类都具有无法生成额外魔法资源的属性。我们将证明这两类量子通道并不重合,具体而言,稳定器操作是完全稳定器保留通道集的严格子集。这可能会导致某些通常
摘要。完全同态加密(FHE)是一种普遍的加密原始原始性,可以在加密数据上计算。在各种加密协议中,这可以使计算将计算外包给第三方,同时保留输入对计算的隐私。但是,这些方案对对手做出了诚实而有趣的假设。以前的工作试图通过将FHE与可验证的计算(VC)相结合来重新移动此假设。最近的工作通过引入环上的同构计算的完整性检查来提高了这种方法的灵活性。但是,对于大乘积深度的电路,有效的fhe也需要称为维护操作的非环计算,即Modswitching和Keyswitching,无法通过现有构造有效验证。我们提出了第一个有效可验证的FHE方案,该方案通常使用双CRT表示,在该方案中通常计算了FHE方案,并使用基于晶格的Snarks来分别证明该计算的组件,包括维护操作,包括维护操作。因此,我们的构造理论上可以处理引导操作。我们还介绍了对包含多个密文 - ciphertext多平台的计算的加密数据的可验证计算的首次实现。具体而言,我们验证了一个近似神经网络的同态计算,该计算在不到1秒钟内包含三层和> 100个密文,同时保持合理的摊贩成本。
[AAR] Scott Aaronson。量子信息科学简介注释。url:https://www.scottaaronson.com/qclec.pdf(cit。p。 2)。[BB13] Rachid El Bansarkhani和Johannes Buchmann。“基于晶格的签名方案的改进和有效的影响”。in:Cryptog -raphy的选定地区 - SAC 2013 - 第20届国际会议,加拿大卑诗省BUNBAN,2013年8月14日至16日,修订了选定的论文。ed。Tanja Lange,Kristin E. Lauter和Petr Lisonek。 卷。 8282。 计算机科学中的注释。 Springer,2013年,pp。 48–67。 doi:10.1007/978-3-662-43414-7 \ _3。 url:https://doi.org/10.1007/978-3-662-43414-7%5C_3(cit。 p。 6)。 [BG14] Shi Bai和Steven D. Galbraith。 “基于学习错误的签名改进的压缩技术”。 in:Cryptology -CT -RSA 2014年的主题 - 2014年RSA会议上的加密摄影师曲目,美国加利福尼亚州旧金山,2014年2月25日至28日,美国加利福尼亚州。。 程序。 ed。 Josh Benaloh。 卷。 8366。 计算机科学中的注释。 Springer,2014年,pp。 28–47。 doi:10.1007/978- 3- 319-04852-9 \ _2。 URL:https://doi.org/10.1007/978-3-319-04852-9%5C_2(cit。> p。 6)。 [bin+] Nina Bindel,Jacqueline Brendel,Marc Fischlin,Brian Goncalves和Douglas Stebila。 “混合密钥封装机制和身份验证的钥匙交换”。 :量词后密码学的国际会议。Tanja Lange,Kristin E. Lauter和Petr Lisonek。卷。8282。计算机科学中的注释。Springer,2013年,pp。48–67。doi:10.1007/978-3-662-43414-7 \ _3。url:https://doi.org/10.1007/978-3-662-43414-7%5C_3(cit。p。 6)。[BG14] Shi Bai和Steven D. Galbraith。“基于学习错误的签名改进的压缩技术”。in:Cryptology -CT -RSA 2014年的主题 - 2014年RSA会议上的加密摄影师曲目,美国加利福尼亚州旧金山,2014年2月25日至28日,美国加利福尼亚州。程序。ed。Josh Benaloh。 卷。 8366。 计算机科学中的注释。 Springer,2014年,pp。 28–47。 doi:10.1007/978- 3- 319-04852-9 \ _2。 URL:https://doi.org/10.1007/978-3-319-04852-9%5C_2(cit。> p。 6)。 [bin+] Nina Bindel,Jacqueline Brendel,Marc Fischlin,Brian Goncalves和Douglas Stebila。 “混合密钥封装机制和身份验证的钥匙交换”。 :量词后密码学的国际会议。Josh Benaloh。卷。8366。计算机科学中的注释。Springer,2014年,pp。28–47。 doi:10.1007/978- 3- 319-04852-9 \ _2。 URL:https://doi.org/10.1007/978-3-319-04852-9%5C_2(cit。> p。 6)。 [bin+] Nina Bindel,Jacqueline Brendel,Marc Fischlin,Brian Goncalves和Douglas Stebila。 “混合密钥封装机制和身份验证的钥匙交换”。 :量词后密码学的国际会议。28–47。doi:10.1007/978- 3- 319-04852-9 \ _2。URL:https://doi.org/10.1007/978-3-319-04852-9%5C_2(cit。p。 6)。[bin+] Nina Bindel,Jacqueline Brendel,Marc Fischlin,Brian Goncalves和Douglas Stebila。“混合密钥封装机制和身份验证的钥匙交换”。:量词后密码学的国际会议。url:p。 2)。Joppe W. Bos,Leo Ducas,Eike Kiltz,TranèdeLepoint,Lyubashevsky Badadim,John M. Schvanck,Peter Schwabe,Gregory Seiler和DamienStehlé。“晶体-Kyber。in。 2018 IEE欧洲研讨会和隐私,欧元和P 2018,英国伦敦,2018年4月24日至26日。IEEE,2018年,pp。 353–367。 doi:10.1109/eurosp.2 url:https://也是如此。 org/1109/eUROSP.2 p。 7)。 Cong Chen,Oussama Danba,William,Will Schwabe,John Schwabe,William Whyte,Zhenfei Zhang,Tsunekazu Saito,Takashi Yamakawa和Keita Xagawa。 ntru - 提交NIST Quantum项目。 https://ntru.org/f/ntru-2019030.pdf 2019(cit。 p。 7)。 [DN12] Leo Ducases和Phong Q. Nguyen。 in:加密技术的进展 - Asiacrypt 2012 处理。 ed。 Xiaoyun Wang和Kazue Sako。 卷。 7658。 阅读计算机科学笔记。 Springer,2012年,pp。 415–432。 doi:10.1007/978-34-642-34961-4 \ _2 url://doi.org/10.1007/978-3- 642-34961-4%5C_26(cid。 p。 7)。 处理。 ed。IEEE,2018年,pp。353–367。doi:10.1109/eurosp.2url:https://也是如此。org/1109/eUROSP.2p。 7)。Cong Chen,Oussama Danba,William,Will Schwabe,John Schwabe,William Whyte,Zhenfei Zhang,Tsunekazu Saito,Takashi Yamakawa和Keita Xagawa。ntru - 提交NIST Quantum项目。https://ntru.org/f/ntru-2019030.pdf 2019(cit。 p。 7)。 [DN12] Leo Ducases和Phong Q. Nguyen。 in:加密技术的进展 - Asiacrypt 2012 处理。 ed。 Xiaoyun Wang和Kazue Sako。 卷。 7658。 阅读计算机科学笔记。 Springer,2012年,pp。 415–432。 doi:10.1007/978-34-642-34961-4 \ _2 url://doi.org/10.1007/978-3- 642-34961-4%5C_26(cid。 p。 7)。 处理。 ed。https://ntru.org/f/ntru-2019030.pdf2019(cit。p。 7)。[DN12] Leo Ducases和Phong Q. Nguyen。in:加密技术的进展 - Asiacrypt 2012处理。ed。Xiaoyun Wang和Kazue Sako。卷。7658。阅读计算机科学笔记。Springer,2012年,pp。415–432。doi:10.1007/978-34-642-34961-4 \ _2url://doi.org/10.1007/978-3- 642-34961-4%5C_26(cid。p。 7)。处理。ed。[GLP12]TimGüneysu,Vadim Lyubashevsky和ThomasPöppelmann。“基于晶格的密码学:嵌入式系统的签名方案”。in:加密硬件和嵌入式系统 - CHES 2012-11届国际研讨会,比利时,比利时,2012年9月9日至12日。由伊曼纽尔·普鲁(Emmanuel Prou)和帕特里克·舒蒙特(Patrick Schaumont)作者。卷。7428。计算机科学中的注释。Springer,2012年,pp。530–547。DOI:10.1007/978-3-642-33027-8 \ _31。url:https://doi.org/10.1007/978-3-642-33027-8%5C_31(cit。p。 7)。[GNR10] Nicolas Gama,Phong Q. Nguyen和Oded Regev。“使用treme修剪的晶格枚举”。in:密码学的进展 - 2010年Eurocrypt。ed。henri Gilbert。柏林,海德堡:斯普林格柏林海德堡,2010年,pp。257–278(cit。p。 4)。[HHK17] Dennis Hofheinz,KathrinHövelmanns和Eike Kiltz。“对富士基 - 奥卡本转换的模块化分析”。在:密码学理论 - 第15届国际会议,TCC 2017,美国马里兰州巴尔的摩,2017年11月12日至15日,会议记录,第一部分。ed。Yael Kalai和Leonid Reyzin。 卷。 10677。 计算机科学中的注释。 Springer,2017年,pp。 341–371。 doi:10.1007/978-3-319-70500-2 \ _12。 URL:https://doi.org/10.1007/978-3-319-70500-2%5C_12(cit。> p。 6)。Yael Kalai和Leonid Reyzin。卷。10677。计算机科学中的注释。Springer,2017年,pp。341–371。doi:10.1007/978-3-319-70500-2 \ _12。URL:https://doi.org/10.1007/978-3-319-70500-2%5C_12(cit。> p。 6)。URL:https://doi.org/10.1007/978-3-319-70500-2%5C_12(cit。p。 6)。
▶KeyGen将其作为输入安全参数λ并输出键(PK,SK),▶ENC将作为输入为输入public键pk和message m and a the Message m and optups c = eng(pk,m),▶dec作为输入秘密键SK和cipher c和cipher c和cipher c and a cipher c and a c and a c and a c and a c and c and optucs m = dec,sk,c),c),
•基于定制的晶格PQC处理器,用于效率,硬件资源和灵活性•使用SIMD并行性进行效率计算•具有双标志路径的效率存储器访问•通过精细粒度重复资源的灵活性
基于光学跃迁的原子钟长期以来一直具有潜力,可以通过使用激光冷却铯原子中的射频跃迁来测量超越最新基准水平的时间和频率。研究人员已经探索了多种架构来实现这种先进的光学计时器。其中一种系统是光学晶格钟,它基于光学晶格中限制的大量超冷中性原子,具有极高的光学跃迁质量因子 [1] 。晶格钟已开发了大约十年。大量的原子数使测量能够以较低的噪声完成原子态的量子投影。在专门设计的激光势中,严格的原子限制使原子激发不受多普勒和运动效应的影响,这些效应对于未捕获的原子来说是明显的。远失谐激光势在魔法波长下工作,其中被探测电子态的光移被抵消 [2] 。在首次提出光格子钟 [3] 之后,早期演示