摘要:蛋白质和多肽已被公认为合成治疗多种人类疾病的新型疗法的潜在线索。不幸的是,由于递送应用的边缘性,这些生物大分子的治疗潜力和临床应用具有挑战性。纳米载体具有独特的潜力,可以克服各种生物屏障并改善蛋白质和多肽等治疗性生物大分子的递送。基于智能纳米载体的药物递送系统可以定义为一种以受控方式针对所有生理屏障进行位点特异性药物递送并最终在体内代谢的系统。本综述介绍了用于递送蛋白质和多肽以增强其临床应用的各种纳米载体。我们还重点介绍了蛋白质和多肽递送的各种生物学方面。我们还总结了用于递送这些生物大分子的纳米载体的各种专利,然后概述了用于递送蛋白质和多肽的市售纳米制剂。
氨基酸对于维持细胞完整性和代谢稳态至关重要。除了蛋白质合成之外,氨基酸也是核苷酸,脂质和细胞壁成分生物合成的前体。s。金黄色葡萄球菌可以合成许多此类氨基酸,但通常会从外部环境中转移到细胞中[2]。有限的葡萄糖可用性(例如,脓肿中)代表了一个环境,其中肽或氨基酸的分解代谢对金黄色葡萄球菌的生长很重要[3]。生物启动分析揭示了启用s的几种途径。金黄色葡萄球菌可分解多种氨基酸,进而可以生成关键的中央代谢中间体,例如丙酮酸,草乙酸和2-氧化甲酸酯。反映了氨基酸在代谢中的重要性,s。金黄色葡萄球菌具有多种寡肽磁盘,游离氨基酸转运蛋白和蛋白酶以降解宿主蛋白。分析64 s。金黄色葡萄球菌菌株表明,氨基酸代谢基因与pangenome分别相关[4],表明靶向与核心氨基酸代谢相关的转运蛋白可能具有针对多样化S的更广泛的治疗潜力。金黄色葡萄球菌分离。氨基酸,肽,渗透剂和核苷摄取系统的多样性和冗余也带来了重大挑战。在USA300_FPR3757基因组中至少有292个基因,预计将编码膜转运蛋白,其中120个似乎与氨基酸,渗透剂或核苷转运有关。从历史上看,细菌膜转运的研究生物信息学工具通常有助于识别和预测固定转运蛋白的功能,但是需要实验性工作来验证按测量值运输的底物及其生理角色。
肽和蛋白质药物可作为治疗剂在市场上买到,并通过各种生物技术工艺制备。由于它们在输送过程中缺乏药物稳定性,因此对蛋白质结构进行修改以保持蛋白质的药理特性。各种蛋白质和肽类药物输送方法都用于正确配制药物。此外,蛋白质和肽类药物输送方面的各种进步都试图克服这些治疗剂输送过程中的问题,如提高稳定性、降低毒性水平和提高对蛋白水解失活的抵抗力、生物利用度、效率和改善循环周期。有必要开发多功能药物输送系统和先进技术,以生产出价格合理的高质量产品。这项研究旨在检查蛋白质/肽类药物输送系统的各种方法和最新进展,与传统的药物输送方法相比,以提高患者的依从性。关键词:蛋白质和肽、药物输送系统、微球、脂质体、纳米颗粒、PE 糖基化。引言
4 Andreu's Vane,Martha Peter,LluísLujan和Sylvia Irust to,d,d,,Manuel Arruebo,,,,,,4 Andreu's Vane,Martha Peter,LluísLujan和Sylvia Irust to,d,d,,Manuel Arruebo,,,,,,
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2020 年 4 月 5 日发布。;https://doi.org/10.1101/2020.04.05.026112 doi:bioRxiv preprint