为了确保模型在CAD过程中的准确性和制造准备,其中一个重要的问题之一是基于牙科几何特征的网状分裂。网格分裂,并认为可以根据其几何特征将复杂的网格分成更简单的部分。在将模型形式化为CAD/CAM工作流程之前,这将成为一种至关重要的技术,因为它可以确保可以准确处理和处理网格的每个段。基于几何特征和提供其他设施的网格分裂对于CAD模型的准确性和精度至关重要。此过程允许3D模型更详细和可管理,这对于CAD/CAM的质量牙科计算和准备工作非常重要。精确,因为它可以进行更详细的设计和修复(Kachalia,P。R.和Geissberger,M。J.2010)
3级疾病,或原发性肿瘤尺寸5 cm或更高,并且BC癌症“同情访问计划”请求在治疗前批准:目前在辅助芳香酶抑制剂上稳定稳定的患者(Brajanas,Brajanas,Brajlet,Brajlet,Brajlet,Brajexe,brajlhrhai not contress not Brajlhrhai)是否可以及时予以治疗。如果疾病进展6个月或更长时间,则允许使用芳香酶抑制剂(BRAVPALAI,BRAVRIBAI)CDK4/6抑制剂,如果辅助辅助剂量进行了6个月或更长时间,以及如果在最后一个辅助芳香酶抑制剂中进行12个月或更长时间的12个月或更长时间随后使用CDK4/6抑制剂(BravravfflrVravrVravrVraverver)(Bravravrververver)(Bravravravfflrververver)(Bravravravfflrverver)(Bravravravfflrverver)(Bravravravfflrververver)(BravravrVravrVraverv)( adjuvant abemaciclib Patients are eligible to receive one of the following, but not their sequential use: abemaciclib per UBRAJABEAI/UBRAJABET or olaparib per UBRAJOLA BC Cancer Compassionate Access Program (CAP) approval is not required to switch between UBRAJABEAI and UBRAJABET Abemaciclib (UBRAJABEAI or ubrajabet)在卡培他滨(Brajcap)之后使用
乳腺癌是全球癌症发病率和死亡率的主要原因,在女性中发病率最高。在乳腺癌的各种亚型中,雌激素受体阳性(ER+)是最常见的。雌激素上调细胞周期蛋白D1,进而促进CDK4/6的活性并促进细胞周期进程。为了解决这个问题,ER+乳腺癌的一线治疗重点是通过靶向芳香化酶来抑制雌激素的产生,芳香化酶是负责雌激素合成限速步骤的酶。因此,将CDK4/6抑制剂与芳香化酶抑制剂结合起来已经成为这种类型乳腺癌的重要治疗策略。这种方法可以有效地抑制雌激素的生物合成并控制不受控制的细胞增殖,显著提高总体生存率并延缓疾病进展。本研究旨在利用基于结构的药物设计策略来识别可能同时抑制CDK4/6和芳香化酶的化合物。制备了12,432种已批准和在研药物,并使用Glide的HTVS和XP对接模式将其对接至CDK6的活性位点,得到277种对接得分为-7 kcal/mol的化合物。使用XP模式将这些化合物对接至芳香化酶,得到七种对接得分为-6.001 kcal/mol的药物。此外,将入围药物与CDK4对接,对接得分范围从-3.254至-8.254 kcal/mol。此外,计算了前七种药物的MM-GBSA。鞣花酸、卡拉洛尔、丹多龙和阿扑吗啡四种药物对这三种蛋白质靶标CDK4/6和芳香化酶均表现出良好的结合亲和力。具体而言,它们与CDK6表现出有利的结合自由能,分别为-51.92、-53.90、-50.22和-60.97 kcal/mol。在这些药物中,阿扑吗啡与所有三个蛋白质靶标表现出最有利的结合自由能。为了进一步评估相互作用的稳定性,对阿扑吗啡与 CDK6 进行了 100 ns 分子动力学模拟。结果表明形成了稳定的配体-蛋白质复合物。而从 MM-GBSA 计算阿扑吗啡的 MD 构象的结合自由能的结果显示,与
酶在各个行业中起关键作用,从食品和饮料到药品和生物燃料。在各种酶中,淀粉酶由于能够将淀粉水解(一种复杂的多糖)催化为较简单的糖而具有重要意义。近年来,对淀粉酶的需求急剧激增,从而广泛研究其生产的微生物来源(Adrio等人。2014)。虽然已经探索了几种生物作为淀粉酶合成的潜在宿主,但土壤生态系统却是淀粉酶产生的微生物的有趣且丰富的储层。酶是在广泛的生物过程中起关键作用的生物催化剂。它们以显着的效率和特异性催化特定的化学反应的能力使它们在各种工业应用中无价。在各种酶阵列中,淀粉酶由于它们能够将淀粉(一种复杂的多糖)水解到诸如葡萄糖和麦芽糖等较简单的糖(Struck等2012)。淀粉酶在诸如食品和饮料,纺织品,纸张和纸浆,洗涤剂,药品和生物燃料生产等行业中发现了广泛使用。对淀粉酶的需求不断增长以及对可持续和生态友好的生产方法的需求导致探索了淀粉酶生产的各种微生物来源(Patel等人2023)。
摘要 ◥ 目的:在 PERTAIN 的初步分析中(中位随访期 31 个月),在曲妥珠单抗和芳香化酶抑制剂 (AI) 基础上加用帕妥珠单抗,联合/不联合化疗,可显著改善未经治疗的 HER2 阳性和激素受体阳性转移性或局部晚期乳腺癌 (M/LABC) 患者的无进展生存期 (PFS)。在未接受诱导化疗的患者中观察到潜在的增强治疗效果。我们呈现最终分析(中位随访期 > 6 年)。患者和方法:患者 (N = 258) 按 1:1 的比例随机分配接受帕妥珠单抗 (负荷/维持剂量:840/420 mg) 加曲妥珠单抗 (负荷/维持剂量:8/6 mg/kg) 每 3 周和 AI (1 mg 阿那曲唑或 2.5 mg 来曲唑每日;A 组) 或曲妥珠单抗和 AI (B 组)。诱导化疗由研究者决定。主要终点:PFS。关键次要终点:总生存期 (OS) 和安全性。
热源性碳(PYC)是一个广泛定义的术语,指的是降解连续体,从轻度烧焦(相对易于降解)到高度凝结的芳香族芳和顽固的碳化合物(Bird等人,2015年,2015年)。持续的烦恼指出了将PYC定量方法应用于土壤样本和解释其结果的困难,其中各种研究报告了PYC浓度的可变性在应用不同的方法时,同一土壤样品的数量级最高阶,例如,应用不同的方法时(例如,Hammes等,2007;Kerré,2007;Kerré等,2006;kerré等人。 )。在发现和描述的最新进步和早期工业木炭富技术溶胶中,它们有可能用作研究土壤中充气碳/生物炭的长期影响的模型系统(Borchard等,2014; Burgeon等人,2020; Criscuoli et al。,2014年)。这些技术溶胶是在以前直立的炉膛(遗物木炭炉膛,RCHS,有时也称为木炭窑)的历史木炭生产的遗迹中发现的,这些木炭主要在北半球潮湿的中纬度Ecozone森林中发现。这些微浮雕位点是圆形高程(在平坦的地形上)或圆形至椭圆形的平台(在倾斜的地形上),平均直径约为10米(Hirsch等人,2020年)。美国东北部和中欧的RCH上的土壤具有特征性的特征性修饰,土壤物理和化学
基团。C – C 键的高反应性还会在各种反应条件下引起立方烷骨架的分解。13 为了开辟立方烷分子科学的新前景,我们开始了立方烷 C – H 转化化学的研究,其中我们选择立方烷的芳基化作为第一个也是最有价值的目标反应。芳基立方烷是立方烷衍生物,最近作为药理学上重要的联芳烃的生物电子等排体而受到关注。14 多芳基化立方烷是前所未有的立方烷衍生物,它们也因其由刚性定向芳基构建的独特、三维和多样化的化学空间而引人注目。在此,我们报道了一种通过定向邻位 -C – H 金属化进行的氨基立方烷钯催化芳基化反应。该方法允许在后期阶段对各种芳基基团进行区域选择性地安装到立方烷骨架上,最终首次合成了多芳基立方烷(图 1)。1988 年,Bashir-Hashemi 报道了立方烷的 C – H 苯基化,其中立方烷基溴化镁通过立方烷-1,4-双(N , N - 二异丙基酰胺)( 1a )的定向邻位锂化生成,然后用苯炔处理得到
环状细菌素 plantacyclin B21AG 的晶体结构和定点诱变揭示了对抗菌活性很重要的阳离子和芳香族残基 Mian-Chee Gor 1,2,+ , Ben Vezina 1,+ , Róisín M. McMahon 1 , Gordon J. King 3 , Santosh Panjikar 4,5 , Bernd HA Rehm 1,6 , Jennifer L. Martin 1,7 , Andrew T. Smith 1,8, * 1 格里菲斯大学格里菲斯药物发现研究所,Don Young Road,Nathan,昆士兰州,4111 澳大利亚。2 皇家墨尔本理工大学科学学院,Plenty Road,Bundoora,维多利亚州,3083 澳大利亚。3 昆士兰大学理学院,昆士兰州,澳大利亚。4 澳大利亚同步加速器,ANSTO Clayton,维多利亚州,澳大利亚。 5 莫纳什大学分子生物学和生物化学系,墨尔本,维多利亚州,3800 澳大利亚 6 格里菲斯大学细胞工厂和生物聚合物中心,格里菲斯药物发现研究所,内森,昆士兰州,4111 澳大利亚。 7 伍伦贡大学,诺斯菲尔兹大道,伍伦贡,新南威尔士州,2522 澳大利亚。 8 格里菲斯科学学院,格里菲斯大学,黄金海岸,昆士兰州,4222 澳大利亚。
摘要 已发现香叶醇和芳樟醇在体外可有效对抗食源性微生物。 然而,由于它们的疏水性,很难在水分含量高的食物中均匀分散,导致活性急剧丧失。 该研究的目的是制备香叶醇或芳樟醇纳米乳液,并研究它们在肉类模拟培养基中对抗大肠杆菌 K12、无害李斯特菌和伦登假单胞菌的效果。 琼脂扩散试验表明香叶醇和芳樟醇对所有细菌都有有效的抗菌活性。 动态光散射表明香叶醇和芳樟醇纳米乳液的平均直径分别为 68.22±2.46 和 173.59±4.15 纳米。 杀灭试验结果表明,这两种纳米乳液都能显著减少大肠杆菌和无害李斯特菌的数量,大约 3 log CFU/ml。事实证明,Ps. lundensis 对两种纳米乳剂的抵抗力更强,细菌数量减少了约 1.2 log CFU/ml。总体而言,这项研究表明,含有香叶醇或芳樟醇的纳米乳剂是一种很有前途的抗菌系统,可以改善食品保鲜和食品安全。
