描述Titanium Taq是一种混合物,该混合物由缺乏5ʹ外核酸酶的TAQ聚合酶和Taqstart®抗体(一种单克隆抗体,在环境温度下抑制钛Taq。taqstart抗体提供自动热启动PCR。还包括了优化的缓冲液混合物(最终浓度为3.5 mm mgcl 2)和DNTP的纯化混合物(每种2.5 mm)。无RNase GC熔化试剂(5M)提高了PCR反应的特异性和产量,尤其是在使用具有高GC含量或复杂二级结构的模板时。该套件包含足够的试剂,可用于每个100μl的钛反应。钛DNA扩增试剂盒设计为与Affymetrix DNA映射产物一起使用(见表1)。
图 1. (a) 基于混合阳离子 2D-PPA 的钙钛矿结构图。2D 或准 2D 结构可能在晶粒边界处形成。此处显示 n = 2 准 2D 结构以供说明。使用单阳离子 PEA + 和混合阳离子 F5PEA + –PEA + 2D-PPA 的器件特性比较:(b) 具有正向和反向电压扫描方向的光电流密度-电压曲线;(c) EQE 曲线;(d) 稳定的功率输出;(e) 室温下相对湿度为 45%–60% 时未封装器件的储存稳定性(ISOS-D-1 稳定性)。
被绘制为灰色水平条。BA 2 FAPB 2 I 7和PA 2 FAPB 2 I 7显示A D(011)与FAPBI 3的D(001)几乎相同,如插图所示。b)FAPBI 3(左)和BA 2 FAPB 2 I 7(右)的单位单元格的图。为每个结构绘制(001)和(011)平面。PB-i-Pb距离对应于FAPBI 3的(001)间间距(001)和BA 2 FAPB 2 I 7的(011)间距(011)。c)模板FAPBI 3掉落涂层实验的示意图。第一个FAPBI 3前体溶液被滴入玻璃基板上,并允许在BA 2 FAPB 2 I 7的晶体上流动。加热时,BA 2 FAPB 2 I 7上的δ-FAPBI 3在裸露基板顶部的δ-FAPBI 3之前转换为α-FAPBI 3。在环境空气中留下,裸底物的顶部的α-fapbi 3在BA 2 FAPB 2 I 7上的α-FAPBI 3之前转换为δ-FAPBI 3。d)(c)中实验的相应照片,显示了底物的三个不同区域。I:BA 2 FAPB 2 I 7没有FAPBI 3解决方案,II:BA 2 FAPB 2 I 7在FAPBI 3解决方案下方,III:III:FAPBI 3溶液在裸玻璃上。e)PL,(f)XRD,表明当BA 2 FAPB 2 I 7上方沉积时,α-FAPBI 3被稳定。
金属卤化物钙钛矿发光二极管 (PeLED) 具有宽色域、高发光效率和低成本合成等特点,是下一代显示应用的有前途的光子源。自 2014 年首次展示室温发射的 PeLED 以来,其性能在几年内迅速提高,引起了学术界和工业界的广泛关注。在这篇综述中,我们讨论了 PeLED 在商业显示应用中的主要技术瓶颈,包括大面积 PeLED 制备、图案化策略和柔性 PeLED 设备。我们回顾了实现这些目标的技术方法,并强调了当前的挑战,同时对这些钙钛矿材料和 PeLED 设备进行了展望,以满足下一代高色纯度全彩显示器市场的需求。
引导能量流和纳米晶体发色团混合组件中产生的激发态的性质对于实现它们的光催化和光电应用至关重要。通过结合稳态和时间分辨的吸收和光致发光 (PL) 实验,我们探测了 CsPbBr 3 -罗丹明 B (RhB) 混合组件中的激发态相互作用。PL 研究表明,CsPbBr 3 发射猝灭,同时 RhB 荧光增强,表明存在单线态能量转移机制。瞬态吸收光谱表明这种能量转移发生在 ~ 200 ps 的时间尺度上。为了了解能量转移是通过 Förster 还是 Dexter 机制发生的,我们利用简便的卤化物交换反应通过与氯化物合金化来调整供体 CsPbBr 3 的光学特性。这样,我们便可以调节供体 CsPb(Br 1-x Cl x ) 3 发射和受体 RhB 吸收之间的光谱重叠。对于 CsPbBr 3 - RhB,能量转移速率常数 (k ET ) 与 Förster 理论非常吻合,而与氯化物合金化以产生富含氯化物的 CsPb(Br 1-x Cl x ) 3 则更利于 Dexter 机制。这些结果凸显了优化供体和受体特性对于设计采用能量转移的光收集组件的重要性。通过纳米晶体供体的卤化物交换可以轻松调节光学特性,这为研究和定制钙钛矿发色团组件中的激发态相互作用提供了独特的平台。
[[A] G. T. Kent博士,E。Morgan,K。R。Albanese,A。Kallistova博士,A。Brumberg博士,L。Kautzsch博士,R。Seshadri教授,A。K。K. Cheetham材料系和材料研究所研究实验室研究实验室研究实验室,加利福尼亚州Santa Barbara,CA 93106(USA)(USA)(USA)(美国): akc30@cam.ac.uk [B] G. Wu博士,K。R。Albanese化学与生物化学系加利福尼亚州圣塔芭芭拉大学,加利福尼亚州圣塔芭芭拉,加利福尼亚州93106(美国)[C] Cheetham材料科学与工程系新加坡国立大学117576新加坡(新加坡)支持本文的信息,通过文档末尾的链接给出。
电场诱导转变发生在具有多种现象的无数系统中,由于其在许多应用中的重要性,引起了广泛的科学兴趣。本综述重点介绍钛酸铋钠 (BNT) 基材料中发生的电场诱导转变,BNT 基材料被认为是一类重要的无铅钙钛矿,是多种应用领域中铅基化合物的可能替代品。BNT 基系统通常被归类为弛豫铁电体,其特征是复杂结构会经历各种电场驱动现象。本综述讨论了晶体结构对称性、畴结构和宏观特性的变化与成分、温度和电负载特性(包括幅度、频率和直流偏置)的关系。八面体倾斜与极化和应变之间的耦合机制以及其他微观结构特征被认为是介导局部和整体电场诱导响应的重要因素。通过强调遍历性对双极和单极循环中域演变和抗疲劳性的影响,讨论了场诱导转变对电疲劳的作用。全面讨论了场诱导转变在关键应用(包括储能电容器、致动器、电热系统和光致发光设备)中的相关性,以确定材料设计标准。最后对未来的研究进行了展望。
关于日本结构钛 (Ti) 合金的研究和开发趋势,本文回顾了过去和现在的情况,并提出了我们对未来战略的想法。作为变形加工和微观结构控制的基本研究政策,有必要通过数据科学方法促进研究和开发的“回顾”,以确定不依赖于经验规则的最佳工艺条件和微观结构形成。此外,合金/微观结构/机械性能的优化设计作为一种“改变游戏规则的方法”,例如专注于非平衡相(马氏体、欧米茄相)或尚未开发用于结构部件应用的 Ti 合金中的杂质添加,被列为创新研究方向。与钢相比,钛的历史非常短,因此它仍然具有巨大的潜力。