免责声明:此MSD中的信息仅适用于指定产品,除非另有说明,否则它不适用于该产品和其他物质的混合物。此MSD仅为那些接受产品用户进行适当专业培训的人提供有关产品安全性的信息。此MSD的用户必须对此SD的适用性做出独立的判断。该MSD的作者将对使用该MSD的任何损害负责。
Spintronics和量子信息科学是两种有前途的信息处理技术的有前途的候选人。这两个字段的组合使我们能够构建用于研究量子现象并实现多功能量子任务的固态平台。很长一段时间以来,由于经典磁化强度的独特特性(在旋转基质和量子位中)在量子信息科学中使用,这两个场的相交受到了经典磁化的不同特性的限制。在过去几年中,这种情况发生了巨大变化,因为使用镁质在编码和处理信息方面取得了显着进展。另一方面,在理解准粒子的纠缠以及设计高质量的量子和光子腔的量子腔处理方面的重大进展提供了物理平台,可以将镁质与量子系统整合在一起。从这些努力中,出现了高度的跨学科领域,它结合了Spintronics,Quantum Optics和量子信息科学。在这里,我们概述了有关镁质量子状态及其与成熟量子平台的杂交的最新发展。首先,我们回顾了镁和量子纠缠的基本概念,并讨论了镁量子的量子状态的产生和操纵,例如单木糖状态,挤压状态和量子多体状态,包括Bose-Einstein凝结以及由此产生的旋转超流体。最后,我们对量子镁质的一些挑战和机遇提出了前景。©2022作者。我们讨论了如何将宏伟的系统与量子平台进行集成和纠缠,包括腔光光子,超导量子台,氮气现象中心和声子,以进行相干信息传输和协作信息处理。这些杂种量子系统对非炎症物理学和平均时间对称性的含义,以及在量子记忆和高精度测量中的应用。由Elsevier B.V.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
背景:糖尿病会引起各种并发症,其中涉及促炎细胞因子,如肿瘤坏死因子-α (TNF-α)、核因子 κB p65 (NF-κB p65)、白细胞介素-6 (IL-6)、分化簇 4 (CD4) 和基质金属蛋白酶-9 (MMP-9)。镁已被证实具有抗糖尿病特性,但其在预防心血管并发症方面的抗炎作用仍不清楚。本研究旨在通过测量糖尿病模型大鼠中 TNF-α、NF-κB p65、IL-6、CD4 和 MMP-9 的表达来评估柠檬酸镁单独使用和与二甲双胍联合使用的抗炎作用。方法:30只雄性Wistar大鼠分为5组:正常对照组、糖尿病对照组、二甲双胍组(9mg/200g/天二甲双胍治疗)、柠檬酸镁组(3.6mg/200g/天柠檬酸镁治疗)和联合治疗组(4.5mg/200g/天二甲双胍+1.8mg/200g/天柠檬酸镁治疗)。除正常对照组外,其余各组均以链脲佐菌素(STZ)和烟酰胺(NA)诱发糖尿病。采用酶联免疫吸附试验(ELISA)检测TNF-α、NF-κB p65、IL-6、CD4和MMP-9的表达水平。结果:各组TNF-α、NF-κB p65、IL-6、CD4和MMP-9的表达水平均有显著差异(p<0.001)。与糖尿病对照组(p <0.001)和其他治疗组相比,联合治疗组所有参数均显示出最显著的降低。二甲双胍和柠檬酸镁单一疗法均显示出细胞因子水平的中度降低,但效果不如联合疗法。结论:二甲双胍和柠檬酸镁联合治疗表现出最强的抗炎作用,显著降低糖尿病 Wistar 大鼠的 TNF-α、NF-κB p65、IL-6、CD4 和 MMP-9 表达。这种组合具有作为治疗糖尿病及其并发症的治疗方法的潜力。关键词:糖尿病、炎症、细胞因子、二甲双胍、柠檬酸镁
可充电镁(MG)电池是下一代储能系统的有希望的候选者,因为它们的潜在高能密度,内在的安全特征和成本效益。在各种电化学伴侣中,与硫(S)阴极的MG阳极组合成为一种有吸引力的选择,因为它提供了超过3,200 WH l –1的显着理论体积能量密度。然而,由于MG-ION电解质,MG多硫纤维的独特特性和MG金属阳极的表面钝化,MG - S电池的发展正面临着多重挑战。在这篇评论中,总结了MG - S电池系统的效率电解质的最新进展。除了电解质外,我们还讨论了制造新的S阴极复合材料,MG阳极和功能分离器方面取得的进展,重点是它们在解决MG - S系统的关键问题方面的作用。最后,值得指出的是,结合实验研究和理论建模的协作研究可以提供更深入的见解,以了解MG的电池系统的机制并促进其开发。总体而言,讨论了有关S-REDOX反应,多梯性航天飞机问题和降解机制的全面见解,讨论了MG - S电池中的降解机制,这对于创建用于增强MG - S电池总体性能的解决方案至关重要。本评论旨在提供研究的当前状态,以刺激有关促进MG - S电池开发的基本准则的创新思想。
单中心,随机,单盲,双臂平行的,重复的剂量研究检查了埃索美拉唑的药代动力学及其在控制1-24个月的婴儿中控制胃内pH值的功效。患者每天每天口服每天口服0.25 mg/kg或1.0 mg/kg的患者,持续7或8天。五十名患者被随机分配,其中43例≤12个月大,7岁> 12个月大。四十五名患者完成了39个≤12个月大的研究,> 12个月大。达到最大血浆浓度(T MAX)的中位时间为0.25 mg/kg剂量约2小时,而1.0 mg/kg剂量组的中位时间为3小时。平均AUCτ为1.0 mg/kg剂量的3.51μmol.H/L,0.25 mg/kg剂量的剂量为0.65μmol.h/l。分别为1.0 mg/kg和0.25 mg/kg剂量获得了0.85μmol/L和0.17μmol/L的平均C最大值。ssmax ssmax ssmax 。 无法得出关于剂量比例的结论。 胃内pH> 4的平均时间百分比从基线时的30.5%增加到0.25 mg/kg剂量组的47.9%,在1.0 mg/kg剂量组中的平均时间从28.6%增加到28.6%到69.3%。 从统计学上讲,与相比,埃索美拉唑的增加明显更高ssmax ssmax ssmax 。 无法得出关于剂量比例的结论。 胃内pH> 4的平均时间百分比从基线时的30.5%增加到0.25 mg/kg剂量组的47.9%,在1.0 mg/kg剂量组中的平均时间从28.6%增加到28.6%到69.3%。 从统计学上讲,与相比,埃索美拉唑的增加明显更高ssmax ssmax 。 无法得出关于剂量比例的结论。 胃内pH> 4的平均时间百分比从基线时的30.5%增加到0.25 mg/kg剂量组的47.9%,在1.0 mg/kg剂量组中的平均时间从28.6%增加到28.6%到69.3%。 从统计学上讲,与相比,埃索美拉唑的增加明显更高ssmax ssmax 。 无法得出关于剂量比例的结论。 胃内pH> 4的平均时间百分比从基线时的30.5%增加到0.25 mg/kg剂量组的47.9%,在1.0 mg/kg剂量组中的平均时间从28.6%增加到28.6%到69.3%。 从统计学上讲,与相比,埃索美拉唑的增加明显更高ssmax ssmax 。 无法得出关于剂量比例的结论。 胃内pH> 4的平均时间百分比从基线时的30.5%增加到0.25 mg/kg剂量组的47.9%,在1.0 mg/kg剂量组中的平均时间从28.6%增加到28.6%到69.3%。 从统计学上讲,与相比,埃索美拉唑的增加明显更高ssmax ssmax 。 无法得出关于剂量比例的结论。 胃内pH> 4的平均时间百分比从基线时的30.5%增加到0.25 mg/kg剂量组的47.9%,在1.0 mg/kg剂量组中的平均时间从28.6%增加到28.6%到69.3%。 从统计学上讲,与相比,埃索美拉唑的增加明显更高ssmax ssmax 。 无法得出关于剂量比例的结论。 胃内pH> 4的平均时间百分比从基线时的30.5%增加到0.25 mg/kg剂量组的47.9%,在1.0 mg/kg剂量组中的平均时间从28.6%增加到28.6%到69.3%。 从统计学上讲,与相比,埃索美拉唑的增加明显更高ssmax ssmax 。 无法得出关于剂量比例的结论。 胃内pH> 4的平均时间百分比从基线时的30.5%增加到0.25 mg/kg剂量组的47.9%,在1.0 mg/kg剂量组中的平均时间从28.6%增加到28.6%到69.3%。 从统计学上讲,与相比,埃索美拉唑的增加明显更高ssmax ssmax 。 无法得出关于剂量比例的结论。 胃内pH> 4的平均时间百分比从基线时的30.5%增加到0.25 mg/kg剂量组的47.9%,在1.0 mg/kg剂量组中的平均时间从28.6%增加到28.6%到69.3%。 从统计学上讲,与相比,埃索美拉唑的增加明显更高ssmax ssmax 。 无法得出关于剂量比例的结论。 胃内pH> 4的平均时间百分比从基线时的30.5%增加到0.25 mg/kg剂量组的47.9%,在1.0 mg/kg剂量组中的平均时间从28.6%增加到28.6%到69.3%。 从统计学上讲,与相比,埃索美拉唑的增加明显更高ssmax ssmax 。 无法得出关于剂量比例的结论。 胃内pH> 4的平均时间百分比从基线时的30.5%增加到0.25 mg/kg剂量组的47.9%,在1.0 mg/kg剂量组中的平均时间从28.6%增加到28.6%到69.3%。 从统计学上讲,与相比,埃索美拉唑的增加明显更高ssmax ssmax 。 无法得出关于剂量比例的结论。 胃内pH> 4的平均时间百分比从基线时的30.5%增加到0.25 mg/kg剂量组的47.9%,在1.0 mg/kg剂量组中的平均时间从28.6%增加到28.6%到69.3%。 从统计学上讲,与相比,埃索美拉唑的增加明显更高ssmax ssmax 。 无法得出关于剂量比例的结论。 胃内pH> 4的平均时间百分比从基线时的30.5%增加到0.25 mg/kg剂量组的47.9%,在1.0 mg/kg剂量组中的平均时间从28.6%增加到28.6%到69.3%。 从统计学上讲,与相比,埃索美拉唑的增加明显更高ssmax ssmax 。 无法得出关于剂量比例的结论。 胃内pH> 4的平均时间百分比从基线时的30.5%增加到0.25 mg/kg剂量组的47.9%,在1.0 mg/kg剂量组中的平均时间从28.6%增加到28.6%到69.3%。 从统计学上讲,与相比,埃索美拉唑的增加明显更高ssmax ssmax 。 无法得出关于剂量比例的结论。 胃内pH> 4的平均时间百分比从基线时的30.5%增加到0.25 mg/kg剂量组的47.9%,在1.0 mg/kg剂量组中的平均时间从28.6%增加到28.6%到69.3%。 从统计学上讲,与相比,埃索美拉唑的增加明显更高ssmax ssmax 。 无法得出关于剂量比例的结论。 胃内pH> 4的平均时间百分比从基线时的30.5%增加到0.25 mg/kg剂量组的47.9%,在1.0 mg/kg剂量组中的平均时间从28.6%增加到28.6%到69.3%。 从统计学上讲,与相比,埃索美拉唑的增加明显更高ssmax ssmax 。 无法得出关于剂量比例的结论。 胃内pH> 4的平均时间百分比从基线时的30.5%增加到0.25 mg/kg剂量组的47.9%,在1.0 mg/kg剂量组中的平均时间从28.6%增加到28.6%到69.3%。 从统计学上讲,与相比,埃索美拉唑的增加明显更高ssmax ssmax 。 无法得出关于剂量比例的结论。 胃内pH> 4的平均时间百分比从基线时的30.5%增加到0.25 mg/kg剂量组的47.9%,在1.0 mg/kg剂量组中的平均时间从28.6%增加到28.6%到69.3%。 从统计学上讲,与相比,埃索美拉唑的增加明显更高ssmax ssmax 。 无法得出关于剂量比例的结论。 胃内pH> 4的平均时间百分比从基线时的30.5%增加到0.25 mg/kg剂量组的47.9%,在1.0 mg/kg剂量组中的平均时间从28.6%增加到28.6%到69.3%。 从统计学上讲,与相比,埃索美拉唑的增加明显更高ssmax ssmax 。 无法得出关于剂量比例的结论。 胃内pH> 4的平均时间百分比从基线时的30.5%增加到0.25 mg/kg剂量组的47.9%,在1.0 mg/kg剂量组中的平均时间从28.6%增加到28.6%到69.3%。 从统计学上讲,与相比,埃索美拉唑的增加明显更高ssmax ssmax 。 无法得出关于剂量比例的结论。 胃内pH> 4的平均时间百分比从基线时的30.5%增加到0.25 mg/kg剂量组的47.9%,在1.0 mg/kg剂量组中的平均时间从28.6%增加到28.6%到69.3%。 从统计学上讲,与相比,埃索美拉唑的增加明显更高ssmax ssmax 。 无法得出关于剂量比例的结论。 胃内pH> 4的平均时间百分比从基线时的30.5%增加到0.25 mg/kg剂量组的47.9%,在1.0 mg/kg剂量组中的平均时间从28.6%增加到28.6%到69.3%。 从统计学上讲,与相比,埃索美拉唑的增加明显更高ssmax ssmax 。 无法得出关于剂量比例的结论。 胃内pH> 4的平均时间百分比从基线时的30.5%增加到0.25 mg/kg剂量组的47.9%,在1.0 mg/kg剂量组中的平均时间从28.6%增加到28.6%到69.3%。 从统计学上讲,与相比,埃索美拉唑的增加明显更高ssmax 。 无法得出关于剂量比例的结论。 胃内pH> 4的平均时间百分比从基线时的30.5%增加到0.25 mg/kg剂量组的47.9%,在1.0 mg/kg剂量组中的平均时间从28.6%增加到28.6%到69.3%。 从统计学上讲,与相比,埃索美拉唑的增加明显更高。无法得出关于剂量比例的结论。胃内pH> 4的平均时间百分比从基线时的30.5%增加到0.25 mg/kg剂量组的47.9%,在1.0 mg/kg剂量组中的平均时间从28.6%增加到28.6%到69.3%。从统计学上讲,与
摘要 不锈钢、钛合金、钴铬合金等金属材料是应用最为广泛的骨科植入物,但在临床应用中仍存在金属与骨的力学不匹配、炎症、二次手术等问题。镁及其合金作为新一代医用金属材料,由于其优异的生物降解性而备受关注。可生物降解的镁基金属具有良好的力学性能和成骨性能,有望成为治疗棘手骨科疾病的植入材料。但腐蚀速度快仍是制约其临床应用的主要挑战之一,合金化和表面改性是控制镁合金腐蚀速度的有效方法。本文综述了可生物降解镁合金的力学性能、生物性能及其在临床应用中存在的问题,重点介绍了镁基金属在合金化和表面改性方面的最新进展,并介绍了镁基植入物在骨科的应用现状。
我们证明了具有Wurtzite结构的MG取代的ZnO薄膜中的铁电性。Zn 1-x mg x o膜通过(111)-PT //(0001)-AL 2 O 3基板在温度下为26至200°C的组合物上的(111)-PT //(0001)-AL 2 O 3底物生长,用于从x = 0到x = 0.37。X射线衍射表示C -Lattice参数的减少,并且在此组合范围内,A -Lattice参数的增加,MG含量增加,导致C/A轴向比为1.595。透射电子显微镜研究表明Zn 1 -x mg X O膜与PT电极之间的突然接口。在P O 2 = 0.025处制备时,通过原子力显微镜测量的Mg浓度> 29%,膜表面被异常定向的晶粒填充。提高P O 2至0.25消除了不良的晶粒。光学测量结果显示,随着MG含量的增加,带隙值的增加。在200°C的亚晶地上制备时,膜显示出超过100μccm-2的远程极化,当Mg含量约为30%至〜37%时,较不超过100μccm-2且胁迫场。底物温度可以降低到环境条件下,当这样做时,电容器堆栈仅显示出较小的牺牲,而对晶体取向和几乎相同的remanent极化值。但是,强制场降至2 mV/cm以下。使用环境温度沉积,我们证明了直接与聚合物亚电体表面集成的铁电容堆栈。
作为地球上最浅的结构金属和最丰富的金属元素之一,除了在铝合金,钢铁脱硫和保护性的铝合金中,镁(MG)还用作运输和电子工业轻量化的“工业金属”。近年来,研究表明,MG成为从储能/电池到生物医学产品的各种新应用中成为“技术金属”的重要潜力。然而,在过去的三十年中,全球MG产量表现出稳定但中等的增长。mg应用作为一种行业金属,由于原始MG生产的一些可持续性问题以及与商业MG合金的结构和腐蚀性能有关的许多技术问题,仍然受到限制。作为工业或技术金属的新型MG应用面临巨大的技术挑战,在过去的二十年中,这在全球研究工作中得到了反映。本文将审查一些过去和现在的申请,并讨论MG研究和全球MG社区应用的未来机会和挑战。©2023重庆大学。Elsevier B.V.代表KEAI Communications Co. Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nc-nd/4.0/)下的开放式访问文章。