然而,此时出现了一个新问题,因为我们不知道任何量子力学状态的精确数学描述,即波函数;而算符需要量子力学状态的绝对数学描述才能产生任何实际结果。现在,虽然我们知道第二条公设提出的不同算符的表达式,但第一条公设只提到存在一个单值、连续和有限的数学函数,但并没有给出实际函数本身;如果没有实际“波函数”的知识,算符几乎毫无用处。因此,人们会认为必须有某种途径可以先获得波函数,然后再将其用作操作数。然而,找到各种量子力学状态的精确数学描述的过程在某种程度上更具协同性。“神奇的奥秘”是,除了最著名的“哈密尔顿算符”之外,所有算符都需要定义量子力学状态的波函数的绝对表达。哈密尔顿算符的特殊之处在于,它不一定需要绝对形式,而只需要符号形式即可产生其物理属性(即能量)的值。然而,在将哈密顿算子应用到波函数的符号形式上时,也得到了绝对表达式。从数学上讲,
写出一组线性方程的矩阵表示并分析方程组的解 查找特征值和特征向量 使用正交变换将二次形式简化为标准形式。 分析序列和级数的性质。 解决均值定理的应用。 使用 Beta 和 Gamma 函数评估不当积分 找到有/无约束的两个变量函数的极值。 UNIT-I:矩阵 矩阵:矩阵的类型,对称;Hermitian;斜对称;斜 Hermitian;正交矩阵;酉矩阵;通过梯形和标准形式对矩阵进行秩计算,通过高斯-乔丹方法求非奇异矩阵的逆;线性方程组;求解齐次和非齐次方程组。高斯消元法;高斯赛德尔迭代法。第二单元:特征值和特征向量线性变换和正交变换:特征值和特征向量及其性质:矩阵的对角化;凯莱-哈密尔顿定理(无证明);用凯莱-哈密尔顿定理求矩阵的逆和幂;二次型和二次型的性质;用正交变换将二次型简化为标准形式第三单元:数列与级数序列:数列的定义,极限;收敛、发散和振荡数列。级数:收敛、发散和振荡级数;正项级数;比较检验、p 检验、D-Alembert 比率检验;Raabe 检验;柯西积分检验;柯西根检验;对数检验。交错级数:莱布尼茨检验;交替收敛级数:绝对收敛和条件收敛。 UNIT-IV:微积分中值定理:罗尔定理、拉格朗日中值定理及其几何解释和应用、柯西中值定理。泰勒级数。定积分在计算曲线旋转表面面积和体积中的应用(仅限于笛卡尔坐标系)、反常积分的定义:Beta 函数和 Gamma 函数及其应用。 UNIT-V:多元微积分(偏微分和应用)极限和连续性的定义。偏微分;欧拉定理;全导数;雅可比矩阵;函数依赖性和独立性,使用拉格朗日乘数法求二元和三元函数的最大值和最小值。
复变量函数。简要回顾荣誉课程大纲所包含的主题:解析函数、柯西-黎曼方程、复平面积分、柯西定理、柯西积分公式。刘维尔定理。莫雷特拉定理。泰勒和罗朗展开式的证明。奇点及其分类。分支点和分支割线。黎曼单。留数定理。留数定理在定积分求值和无穷级数求和中的应用。(11 讲)线性向量空间、子空间、基和维数、向量的线性独立性和正交性、格拉姆-施密特正交化程序。线性算子。矩阵表示。矩阵代数。特殊矩阵。矩阵的秩。初等变换。初等矩阵。等价矩阵。线性方程的解。线性变换。基的变换。矩阵的特征值和特征向量。凯莱-哈密尔顿定理。矩阵的对角化。双线性和二次型。主轴变换。(9 讲)