→ 推荐做法 计算成本的另一种方法是使用出口孔或喷嘴直径和施加的压力来计算流量(见表格、图 19 孔口流量、附录图表部分)。 如果必须使用喷嘴,例如从面包上吹掉松散的面粉(图 6),则要确保出口喷嘴和产品之间的距离尽可能短,因为这样可以降低供应压力。 喷嘴应该只对准需要的区域,形成锥形(圆形区域)或扇形喷雾(长而窄的带子)等。 当需要覆盖非常长而窄的区域时,请并行使用喷嘴来形成帘幕,从而缩短到最远点的距离。 确保通向多个喷嘴的主供水管具有足够的直径,以免限制出口流量。
摘要:融合沉积建模(FDM)是一种生产原型和功能组件的良好制造方法。本研究通过材料和与过程相关的影响变量研究了FDM组件的机械性能。的拉伸试验以其原始丝形式的七种不同材料进行,其中两种是纤维增强的,以分析其与材料相关的影响。涵盖从相关的载荷组件的标准材料到高级材料及其各自的变化,聚乳酸(PLA),30%木纤维增强的PLA,丙烯硝基丁烷苯乙烯苯乙烯苯乙烯苯乙烯苯乙烯苯乙烯(ABS)(ABS)(abs),聚碳酸酯(PC),聚碳酸酯(PC),abled and nyls and nyls and nyls-frend-nyls-Flend ways-Flass-Flend ways ways-Flast-Flend-Flend ways-Flast-Flend ways-Flast-Flend。使用以下过程参数研究了与过程相关的影响变量:层厚度,喷嘴直径,构建方向,喷嘴温度,填充密度和模式以及栅格角度。第一个测试系列表明,由于缺乏与基质的纤维键合,木纤维的添加显着恶化了PLA的机械行为。ABS和PC的聚合物混合物仅显示刚度的改善。尽管纤维纤维 - 雄性雄性粘结部分较差,但通过嵌入尼龙中的玻璃纤维嵌入玻璃纤维,发现了显着的强度和刚度。选择具有最佳属性的材料进行过程参数分析。在检查层厚度对零件强度的影响时,明显相关。零件取向确实改变了测试样品的断裂行为。较小的层厚度导致较高的强度,而刚度似乎没有受到影响。相反,较大的喷嘴直径和下部喷嘴温度仅对刚度产生积极影响,对强度影响很小。尽管向边缘方向导致较高的刚度,但在较低的应力下失败了。较高的填充密度和与负载方向对齐的填充图案导致了最佳的机械结果。栅格角对印刷物体的行为产生了重大影响。与单向栅格角相比,交替的栅格角会导致较低的强度和刚度。但是,由于珠子的旋转,它也引起了显着的拉伸。
分布式和护理点(POC)制造设施实现了一种敏捷的药物生产范式,可以响应本地化需求,从而提供个性化和精确的医学。这些功能对于狭窄的治疗指数药物以及小儿或老年剂量以及其他专业需求至关重要。先进的添加剂制造,3D打印和按需(DOD)分配技术已开始扩展到药物生产中。我们采用了设计(QBD)框架来识别药品制造框架的关键质量属性(CQAS),关键材料属性(CMA)和关键过程参数(CPP),这些框架涵盖了活跃的药品成分(API)的“ API)“在集中式”中的投入/送货服务的procs/dod cortriated dod cortive dod corts dod cocc serd cocs poc cocs proces cortion dod cocc insport of dod cocc s proces dod cocc cocs process的生产。胶片,胶囊,单剂量小瓶)。QBD考虑和因果分析确定了分配的API数量和固态形式(CQAS),以及喷嘴直径,系统压力通道和分配的滴剂数量(CPP),以进行详细研究。最终测定定量和含量均匀性CQA是从甘油/水的示出的左甲状腺素钠单剂量液体小瓶中测量的,满足标准的接受值。每个POC设施不太可能保持全面的质量控制实验室能力,需要开发适当的Atline
摘要直接能量沉积(DED)过程利用激光能量融化金属粉末并将其存放在基板上,以生产复杂的金属零件。这项研究被用作修复二手零件的再制造和维修过程,从而减少了制造业中不必要的废物。但是,修复过程中可能会产生缺陷,例如孔隙率或颠簸的形态缺陷。传统上,操作员将使用实验设计(DOE)或仿真方法来了解打印参数对印刷部分的影响。有几个影响因素:激光功率,扫描速度,粉末进料速度和对峙距离。每个DED机器在实践中都有不同的设置,这导致打印结果的一些不确定性。例如,在不同的DED机器中可以改变喷嘴直径和激光类型。因此,假设如果可以实时监控打印过程,则修复可能更有效。在这项研究中,使用结构化的光系统(SLS)来捕获印刷过程的层面信息。SLS系统能够以10 µm的高分辨率进行3D表面扫描。鉴于对零件的初步扫描并允许对每一层信息进行实时观察,要确定需要存放多少材料。一旦找到缺陷,DED机器(混合机器)将更改工具并删除有缺陷的层。修复后,应用无损方法计算机断层扫描(CT)检查其内部特征。在这项研究中,使用316L不锈钢的DED机器来执行维修过程以证明其有效性。实验室构建的SLS系统用于捕获每个层的信息,并为质量评估提供了CT数据。新颖的制造方法可以提高DED维修质量,减少维修时间并促进维修自动化。将来,在制造行业中使用巨大的潜力来修复用过的零件,并避免购买新零件所涉及的额外费用。