分布式参数系统,充气空间结构,机械系统的位置和运动控制,灵活机械系统,智能结构,微力机械系统,计算方法,工业应用教育博士的被动和主动振动控制。加利福尼亚州伯克利的机械工程大学,1989年M.S.应用机械密歇根州立大学,密歇根州东兰辛,1985年工程力学达利安技术学院,中国达利安,1982年,就业历史03/01–现任教授,部门航空航天机械工程大学南加州大学,洛杉矶,加利福尼亚州06/008/00 NASA-ASEE夏季教职员工,喷气推进实验室09/95 - 02/02/01副教授,航空航天机械工程大学南加州大学,洛杉矶,加利福尼亚州09/97-08/98副主席机械工程,USC 09/89-08/95助理教授南加州机械工程大学,洛杉矶,加利福尼亚州荣誉和奖项,美国机械工程师学会荣誉和奖项,2002年1月,诺斯罗普·格鲁曼公司优秀研究奖,1995年美国陆军研究奖,1993年NSF Research Intiation Initiation奖,1990年USC教职研究奖
摘要 - 自太空时代开始以来,NASA 一直是开发太空通信和导航技术的领导者——尤其是在阿波罗登月任务和 NASA 首次进入深空期间。为了支持未来的探索和科学需求,NASA 正在逐步引入光通信技术来增强其射频 (RF) 系统。光通信将通过提供高数据速率和更好的长距离导航来实现新的科学和探索任务。NASA 已经进行了几次光通信演示,包括月球激光通信演示 (LLCD)、激光通信中继演示 (LCRD) 和太字节红外传输 (TBIRD) 系统。从历史上看,NASA 曾与喷气推进实验室 (JPL) 和麻省理工学院林肯实验室 (MIT/LL) 合作开发光通信技术。除了开展光通信外,NASA 的空间通信和导航 (SCaN) 计划正在经历范式转变,从政府拥有和运营的网络转向尽可能使用商业服务。美国宇航局空间技术任务理事会 (STMD) 与 SCaN 合作,确定了支持未来空间通信和导航所需开发的关键技术,包括增强型射频、光学和第三代合作伙伴 (3GPP) 蜂窝功能以及高速网络。本文简要介绍了一些当前和即将进行的光学演示,并概述了 STMD 对 2030 年以后光通信和导航的设想。
JW Marr 博士,通用电气公司;Glen W. Howell、RJ Salvinski、Terry Weathers,TRW 系统公司;WF MacGlashan, Jr.、O. F. Keller、Leonard Sauer、John Dräne、W. Tener,喷气推进实验室;AE Stone、RK Madsen,霍尼韦尔公司;DJ Easton,罗克韦尔制造公司;Merle A. Jones、James Wiggins、Floyd Bulette,马歇尔太空飞行中心;GF Tellier、Ed Prono,北美航空公司,Rocketdyne 分部;James R. Jedlicka、George Edwards、Horace Emerson,艾姆斯研究中心;RB Carpenter、JD Goggins,北美航空公司,空间与信息分部;Herbert Hope, Jr.,詹金斯兄弟公司;Paul Foster、Paul McKenna,刘易斯研究中心;Fred H. Husman,沃尔沃斯公司; Lowell C. Horwedel,Electrofilm 公司;Clinton T. Johnson,飞行研究中心;CC Shufflebarger,兰利研究中心;Joseph Englert,Crane 公司;John A. Farris,Pall 公司;Ralph Renouf,Black, Sivalls & Bryson 公司;以及 John T. Wheeler,载人航天中心。
本 NASA 技术手册由美国国家航空航天局 (NASA) 发布,作为指导文件,提供工程信息、经验教训、解决技术问题的可能方案、类似项目、材料或工艺的分类、解释性指导和技术以及任何其他类型的指导信息,这些信息可能有助于政府或其承包商设计、建造、选择、管理、支持或操作系统、产品、流程或服务。本 NASA 技术手册已获准供 NASA 总部和 NASA 中心和设施使用。它也可能适用于喷气推进实验室(联邦资助的研究和开发中心 [FFRDC])、其他承包商、赠款和合作协议的接受者以及其他协议的各方,但仅限于适用合同、赠款或协议中规定或提及的范围。本 NASA 技术手册建立了一个无人驾驶任务架构框架,旨在提高科学研究的价值;提高端到端任务开发的有效性,包括利用数字工程技术;加强机构能力管理;并改善 NASA 科学组合中数字模型和产品的协作应用。信息请求应通过 https://standards.nasa.gov 上的“反馈”提交。对本 NASA 技术手册的变更请求应通过 MSFC 表格 4657《NASA 工程标准变更请求》提交。原件由 Adam West 于 2021 年 3 月 11 日签署 _______________________________ _____________________ Ralph R. Roe, Jr. 批准日期 NASA 首席工程师
飞行软件是任何航天器成功执行任务的基础。飞行软件的可靠性并不是一个新话题,过去几十年来,人们通过质量保证、容错和故障安全操作对飞行软件进行了广泛的研究,特别关注了具有冗余层的飞行软件。尽管人们关注故障管理原则和实践,但对飞行软件的网络安全关注有限。飞行软件的容错与飞行软件的安全挑战之间的主要区别在于,容错假设故障本质上是概率性的,并且故障将按照可预测的顺序从可预测的环境影响中发生。飞行软件的网络安全威胁是由一个聪明的对手传播的,尽管有故障安全机制或可用的防御措施,他们可能会积极地与飞行软件互动,故意以一种意想不到的方式强调其流程。攻击者的追击或下一步行动并不像环境传播的故障那样可预测。虽然飞行软件社区历来以隐蔽安全为幌子运作,但飞行模块的开源和商用现货 (COTS) 日益普及,抹去了任何可察觉的安全优势。美国宇航局的核心飞行系统 (cFS) 和美国宇航局喷气推进实验室的 F' 飞行软件可供对手和安全研究人员随时探索,这迫使公众讨论太空飞行软件安全实践和“新”太空时代的要求。本文提出了飞行软件安全的研究议程,讨论了迄今为止在相关领域开展的强有力的相关研究,
Farside Seispoom Suite:更新了月球范围内第一个阴蒂站的状态。M. P. P. P. P. Panning 1,Sharon Keedar 1,Asad Aboobaker 1,Glenn Aveni 2,Kevin Biernacki 3,Neil Bowles 4,Simon Calcutt 4,Gabrielle Chabaud 2,Melanie Drilleau 2夏洛特·格劳德6,阿兰·吉瓦杜丹3,安娜·霍森7,莫里斯·卡拉卡克3,坦尼·尼布特2,坦尼·尼布特2,坦吉·尼布特2,坦泰nebut 2 Nunn 1,Sreejaya Kizhaekke Parkhillam 2,9,Constanza Pardo 2,W。TomPike 10,Gabriel Poont 11,Sebasten de Raucourt 2,Olivier Robert 2,Daniel Sheward 12,Daniel Sheward 12,Sylvain Tillier,Sylvain Tillier Arnaud Wilhelm 5 1加利福尼亚理工学院的喷气推进实验室,4800 Oak Grove Dr.宇宙学(APC),法国,英国牛津大学4号,法国5号,法国伊萨尔·苏帕罗(Isae Supaero),法国6,英国布里斯托尔大学7号,布里斯托尔大学7 Hensold Space Consulting 8,布里斯特大学9英国伦敦学院,法国11 CNES,optervatire delaCôted'Azur,法国,13 NASA MARSHALL太空飞行中心
自 1991 年以来,美国能源部斯坦福现场办公室向能源部总部项目办公室赞助商报告斯坦福线性加速器中心 (SLAC) 项目和问题。14 年来,马丁·W·莫洛伊博士一直担任斯坦福现场办公室周报的编辑。5 月 3 日,在他为能源部和美国国家航空航天局服务 39 年后退休。莫洛伊博士出生于纽约市北部布朗克斯区,就读于只提供奖学金的曼哈顿里吉斯高中和哥伦比亚大学。他主修矿物学(硕士、地质学博士),将野外测绘、X 射线衍射和荧光(他整个职业生涯的核心主题)应用于犹他州中部图沙尔山脉火山岩中的铀矿化。作为德士古油田地质学家,莫洛伊博士在加州海岸文图拉盆地以下 15,000 英尺处勘探石油。在加州理工学院喷气推进实验室,他是首批月球和行星地质学家之一,开发了回收土壤的方法,以便海盗号火星着陆器探测生命。作为勘测项目科学家,莫洛伊博士领导了一系列三足航天器的月球探索,这些航天器于 1966-68 年登陆月球。
为了实现高热能能量转换效率,希望在大温度梯度上操作热电发电机设备,并最大程度地提高用于构建设备的材料的热电性能。但是,没有单个热电材料适合在非常宽的温度(〜300-1000k)中使用。因此,必须在其具有最佳性能的每个温度范围内使用不同的材料。这可以通过两种方式实现:1)多阶段热电发生器,每个阶段在固定温度差上运行,并且是电隔离的,但与其他阶段进行热接触2)分段的发电机,其中P和N-Legs形成了由不同片段组成的不同片段。在较早的出版物中引入了将喷气推进实验室开发的新的热电材料整合到分段热电Unicouple中的概念。这种新的Unicouple预计将在300-973 K的温度差上运行,并将根据最先进的热电材料和新颖的P-Type Zn 4 SB 3,P-Type 4 SB 12-基于4 SB 12的合金和N型cosb 3-by-bys alloys的组合,将使用新颖的分段腿。预计该新的单分型将预计转化效率约为15%。我们在本文中介绍了该Unicouple制造的最新实验结果,包括P-Legs,N腿和P-Leg与N-Leg互连的不同段之间的键合研究。
成像光谱学作为一种新的地球遥感方法越来越受到关注。随着高光谱遥感器(包括机载和太空载)的出现,以及快速计算系统的高存储容量和用于存储和处理高光谱数据的先进软件,现在可以检测和量化各种地球资源材料(Goetz,2009 年)。作者和其他人(Goetz 等人,1985 年)提出的成像光谱法的原始定义是“获取数百个连续、已配准的光谱带中的图像,以便可以为每个像素导出辐射光谱”。高光谱传感器或成像光谱仪收集的独特数据既是一组空间连续的光谱,也是光谱连续的图像(Goetz 等人,1985 年)。高光谱遥感最早的应用之一是地质测绘及其在矿产勘探中的商业作用。 Staenz (2009) 记录了陆地成像光谱学的发展,该技术始于 20 世纪 70 年代末,由美国宇航局喷气推进实验室 (JPL) 和加拿大政府/私人合作伙伴(渔业和海洋部/Moniteq)共同开发,随后在美国开发了机载成像光谱仪 (AIS;Vane 和 Goetz,1988),在加拿大开发了荧光线成像仪 (FLI;Gower 等人,1987),并分别于 1983 年和 1984 年首次获取数据。这些活动促成了 1987 年第一台可见光和近红外
自太空时代开始以来,JPL 的太空飞船已经造访过太阳、月球和所有八大行星,有些甚至已经完全飞出太阳系。JPL 将旅行者号、伽利略号和卡西尼号送往外行星,将探测器送上火星,绘制金星云层覆盖的表面,并为尼尔·阿姆斯特朗在月球上迈出“一小步”铺平道路,而 JPL 最初是一个由和平主义者管理的军用火箭研究机构,而他当时只是想探索高层大气。加州理工学院喷气推进实验室非正式成立,当时航空学教授西奥多·冯·卡门 (Theodore von Kármán) 的研究生弗兰克·马利纳 (Frank Malina) [MS ME '35, MS AE '36, PhD '40] 和一些朋友在 1936 年在干河道中试射了一台火箭发动机。JPL 自 1958 年以来一直退出火箭业务,成为其成功开发美国第一颗卫星“探险者 1 号”的牺牲品。“探险者 1 号”是为回应 1957 年 10 月发射的 Sputnik 而发射的,Sputnik 标志着苏联对低地球轨道的主权。1957 年 8 月,世界上第一枚洲际弹道导弹(俄罗斯制造)发射升空,每隔 96 分钟就会飞过上空,斯普特尼克号提醒紧张不安的美国,核弹头也可以很容易地发射到那里。这是 JPL 从武器实验室到行星探测器的历程。