表 2-1:与常见声源相关的典型声压级 ...................................................................................................... 2-2 表 3-1:产权线噪声限制 ...................................................................................................................... 3-3 表 4-1:CSE 项目环境噪声级 (2011) ............................................................................................. 4-1 表 5-1:施工噪声级 ...................................................................................................................... 5-2 表 6-1:现有交通噪声级 ............................................................................................................. 6-2 表 6-2:施工期间的未来交通噪声级 ............................................................................................. 6-2 表 6-3:交通噪声级的增加 ............................................................................................................. 6-2 表 7-1:主要设备噪声级 ............................................................................................................. 7-1 表 7-2:电池储能系统噪声级 ............................................................................................................. 7-1 表 7-3:变电站噪声级 ............................................................................................................. 7-1
8.4 工作和生活空间的噪声级限值应符合国际劳工组织关于暴露级的国际指导方针,包括国际劳工组织《2001 年工作场所环境因素行为守则》中的指导方针,以及(如适用)国际海事组织《1981 年船上噪声级规则》所建议的特殊保护,以及其后关于船上可接受噪声级的任何修正和补充文件。船上应携带一份英文或船舶工作语言的适用文书副本,并应方便海员取用。
图 28:排放侧 2D 发生频率(调制频率与风力涡轮机转速)......................................................................................... 59 图 29:调制深度与输出辐射(SA 2 顶部,SA 4 底部)........................................ 64 图 30 按风向和输出分类的频率分布 Δ L AM,SA 1 至 SA 4 ............................................................................................. 65 图 31 按风向和风速分类的频率分布 Δ L AM,SA 5 ............................................................................................................. 66 图 32:SA 1 中排放范围内的调制深度与剪切参数......................................................................................................... 67 图 33:SA 2 中辐射范围内的调制深度与剪切参数......................................................................................................... 68 图 34:有风力涡轮机的高速公路沿线 10 Hz 噪声曲线比较......................................................................................................... 69 图 35:AM 方法与最大周期性噪声级方法的比较(SA 2)............................................................................................. 70 图 36:AM 方法与最大周期性噪声级方法的比较(SA 4)............................................................................................. 71 图 37:AM 方法与最大周期性噪声级方法的比较(SA 5)......................................................................................... 71 图 38:接地板上的次声麦克风 ............................................................................. 73 图 39:带有单独线条的声压谱 ............................................................................. 74 图 40:带有单独线条的声压谱,放大 ............................................................. 75 图 41:随时间变化的声压级曲线 ............................................................................. 78 图 42:SA 5 中 G 加权级的频率分布 ............................................................. 79 图 43:SA 5 中 3 Hz 以内的频带级的频率分布 ............................................................. 80 图 44:SA 5 中 4 至 7 Hz 以内的频带级的频率分布 ............................................................. 80 81 图 46: SA 5 中 25 至 80 Hz 频带的声级频率分布 .............................................. 81 图 47: SA 5 中 A 加权声级的频率分布 .............................................................. 83 图 48: SA 5 中 125 Hz 频带的声级频率分布 ............................................................. 84 图 49: SA 5 中可听声音范围内的三分之一倍频程频谱 ............................................................. 85 图 50:可听声音与次声的声级 ............................................................................. 86 图 51:接地板测量和三脚架测量 ............................................................................................................................................. 87 图 52:不同风速下差异频谱(三脚架-接地板)的 80% 百分位数 ............................................................................................. 88 图 53:低负载、中负载和大负载测得的三分之一倍频程频谱,SA 5 ............................................................................................. 92 图 54:为额定输出时背景和风力涡轮机计算的三分之一倍频程频谱,SA 1 ............................................................................. 93 图 55:为额定输出时背景和风力涡轮机计算的三分之一倍频程频谱,SA 2 ............................................................................. 94
摘要:本研究比较了机场附近学校环境噪声诊断指标。目的是分析和确定最适合衡量飞机在着陆和起飞过程中对学校噪声影响的标准。基于噪声测绘和声级验证,对巴西进行了案例研究。使用声学模拟和噪声测绘调查了昼夜平均噪声级 (DNL) 和超限时间 (TA),以确定关键接收器。对机场周围两所学校的 DNL 和 TA 的结果表明,市政当局和机场当局用来描述机场噪声的标准不令人满意,并且没有反映这种噪声的间歇性行为。经验证,基于噪声中断的单个接收器分析认为 TA 参数更适合评估机场附近学校的噪声影响。
我们提出了一种新颖的视频异常检测方法:我们将从视频中提取的特征向量视为具有固定分布的随机变量的重新释放,并用神经网络对此分布进行建模。这使我们能够通过阈值估计估计测试视频的可能性并检测视频异常。我们使用DE-NONISE分数匹配的修改来训练视频异常检测器,该方法将训练数据注射噪声以促进建模其分布。为了消除液体高参数的选择,我们对噪声噪声级别的噪声特征的分布进行了建模,并引入了常规化器,该定期用器倾向于将模型与不同级别的噪声保持一致。在测试时,我们将多个噪声尺度的异常指示与高斯混合模型相结合。运行我们的视频异常检测器会引起最小的延迟,因为推理需要仅提取特征并通过浅神经网络和高斯混合模型将其前向传播。我们在五个流行的视频异常检测台上的典范表明了以对象为中心和以框架为中心的设置中的最先进的性能。
摘要 — 量子网络由相互连接的量子服务器组成,这些服务器能够进行通信和协作以完成计算任务。该网络中的量子服务器必须相互识别和验证。例如,当量子服务器打算在另一台机器上执行计算任务时,量子服务器必须验证其他量子服务器的真实性,以保持对委托计算的信心。虽然已经提出了几种对这些量子计算机进行指纹识别的方法,但许多方法都需要大量资源,目前并不实用。为了解决这个问题,我们引入了 Q-ID,这是一种轻量级的指纹识别方法,可以准确识别量子计算需求可忽略不计的量子服务器。Q-ID 通过在两个不同的噪声级别上运行用户的任务电路来运行,并使用由此产生的性能差距作为量子服务器的唯一标识符。此外,我们还开发了一种误差演化算法,允许用户在本地估计这种性能差距。通过将估计的差距与实际差距进行比较,用户可以有效地识别或区分网络中的量子服务器。我们在 IBM 量子平台上的实验展示了我们方法的有效性和优势。索引术语 — 量子指纹识别、量子网络、量子计算、误差演化
ACC 空战司令部 AFB 空军基地 AFI 空军指令 AFPD 空军政策指令 AICUZ 空中设施兼容使用区 空军 美国空军 APZ 事故潜在区 ATC 空中交通管制 BASH 鸟类/野生动物飞机撞击危险 CATM 战斗武器训练与维护 CDNL C 加权昼夜平均噪声级 CFR 联邦法规 CZ 净区 dB 分贝 DNL 昼夜平均声级 DoD 国防部 EMI 电磁干扰 FAA 联邦航空管理局 FAR 楼层面积比 GCA 地面控制进近 HAFZ 飞机飞行区危害 HRPDC 汉普顿路规划区委员会 Hz 赫兹 IONMP 装置运行噪声管理计划 JBLE 兰利-尤斯蒂斯联合基地 JLUS 联合土地利用研究 LaRC 兰利研究中心 LFA 兰利飞行进近 Lpk 峰值声压级 MSL 平均海平面 NASA 美国国家航空航天局 NLR 噪音水平降低 NVGs 夜视镜 PA 公共事务RPA 遥控飞机 SLUCM 标准土地使用编码手册 UAS 无人机系统 USC 美国代码 USDA 美国农业部 VFR 目视飞行规则