获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
这项工作批判性地分析了现有的开放词汇 EEG 到文本翻译模型。我们发现了一个关键的局限性:以前的研究在评估过程中经常采用隐性教师强制,人为地夸大了性能指标。此外,他们缺乏一个关键的基准——比较纯噪声输入上的模型性能。我们提出了一种方法来区分真正从 EEG 信号中学习的模型和仅仅记忆训练数据的模型。我们的分析表明,模型在噪声数据上的性能可以与在 EEG 数据上的性能相媲美。这些发现强调了 EEG 到文本研究中需要更严格的评估实践,强调透明的报告和对噪声输入的严格基准测试。这种方法将带来更可靠的模型能力评估,并为强大的 EEG 到文本通信系统铺平道路。代码可在 https://github.com/NeuSpeech/EEG-To-Text 获得