a 探测器 1 触发,然后在两个脉冲之后,探测器 2 触发 b 探测器 1 触发,然后探测器 2 在下一个脉冲时触发 c 探测器 1 和 2 同时触发 d 探测器 2 触发,并且探测器 1 在下一个脉冲时触发 e 探测器 2 触发,然后,两个脉冲之后,探测器 1 触发。 3. 统计每列中的巧合次数并制作关于时间延迟的直方图。 4. 在光子模型中,每个探测器都有 50% 的触发几率,但是每次只能触发一个。通过抛一枚硬币来建模。如果掷出正面,则探测器 1 触发;如果掷出反面,则探测器 2 触发。重复 30 个脉冲,统计巧合次数并制作直方图,就像在波模型中一样。 5. 在波模型中,两个探测器同时触发的概率是多少?那么在光子模型中呢?6. 在波模型中,探测器 1 触发,并且在下一个脉冲时探测器 2 触发的概率是多少?那么在光子模型中呢?7. 在光子模型中,如果我们发送一个包含两个光子的脉冲(即两个光子同时到达分束器),那么两个探测器同时触发的概率是多少?
去噪扩散概率模型 (DDPM) 最近在图像合成中表现出色,并在各种图像处理任务中得到广泛研究。在这项工作中,我们提出了一种用于生成三维 (3D) 医学图像的 3D-DDPM。与以前的研究不同,据我们所知,这项工作首次尝试研究 DDPM 以实现 3D 医学图像合成。我们的研究检查了脑肿瘤高分辨率磁共振图像 (MRI) 的生成。通过在半公开数据集上的实验对所提出的方法进行了评估,定量和定性测试都显示出有希望的结果。我们的代码将在 https://github.com/DL-Circle/3D-DDPM 上公开提供。关键词:扩散模型、图像合成、磁共振成像 (MRI)。
脑电图(EEG)在临床癫痫治疗中常用于监测癫痫患者脑部电信号的变化。随着信号处理和人工智能技术的发展,人工智能分类方法在癫痫脑电信号的自动识别中发挥着重要作用。但传统分类器容易受到癫痫脑电信号中杂质和噪声的影响。针对这一问题,该文设计了一种抗噪声低秩学习(NRLRL)脑电信号分类算法。NRLRL建立低秩子空间连接原始数据空间与标签空间,充分利用监督信息,考虑样本局部信息的保存性,保证类内紧凑性和类间离散性的低秩表示。将非对称最小二乘支持向量机(aLS-SVM)嵌入到NRLRL的目标函数中。 aLS-SVM基于pinball损失函数寻找两类样本间的最大分位数距离,进一步提高了模型的噪声鲁棒性。在Bonn数据集上设计了多个不同噪声强度的分类实验,实验结果验证了NRLRL算法的有效性。
时间采样框架 (TSF) 认为,诵读困难特有的语音困难是由一个或多个时间速率的非典型振荡采样引起的。LEEDUCA 研究对儿童进行了一系列脑电图 (EEG) 实验,让儿童聆听慢节奏韵律 (0.5-1 Hz)、音节 (4-8 Hz) 或音素 (12-40 Hz) 速率的调幅 (AM) 噪声,旨在检测可能与诵读困难相关的振荡采样感知差异。这项研究的目的是检查这些差异是否存在,以及它们与儿童在通常用于检测诵读困难的不同语言和认知任务中的表现有何关联。为此,估计了时间和频谱通道间EEG连接,并训练了去噪自动编码器(DAE)来学习连接矩阵的低维表示。通过相关性和分类分析研究了这种表示,结果表明其能够以高于0.8的准确率检测出诵读困难患者,平衡准确率在0.7左右。DAE表示的某些特征与儿童在语音假设类别的语言和认知任务中的表现显著相关(p<0.005),例如语音意识和快速符号命名,以及阅读效率和阅读理解。最后,对邻接矩阵的更深入分析显示,DD受试者颞叶(大致是初级听觉皮层)电极之间的双侧连接减少,以及F7电极(大致位于布罗卡区)的连接增加。这些结果为使用更客观的方法(例如 EEG)对阅读障碍进行补充评估铺平了道路。
这项研究旨在首先在家中测试痴呆症的社会问题,而无需去医院,可以通过简单地将传感器附加到头部并在15分钟内进行评估,而无需去医院,就可以做出与医生诊断相似的预测。这使我们能够满足想要检查自己和家人的潜在痴呆症患者的需求。从技术上讲,这是一种新的大脑测试技术,它将大脑连接到计算机,称为大脑计算机接口,并根据从100多个测试实验中获得的大数据来处理大脑的统计,因此不必进行医生的访谈或大脑成像测试。
神经系统疾病代表与人类神经系统相关的异常。它们还包含中枢神经系统、脊髓或大脑的生化、解剖或电改变。这些疾病会引发不同的症状。及早诊断此类变化对于治疗是必要的,目的是限制疾病进展。本文介绍了一种精确的 CAD 系统来对脑 MRI 进行分类,该系统克服了模式分类中的关键问题,例如在训练阶段提取某些特征。我们的贡献是融合第二代小波 (SGW) 网络和深度学习架构,从而提出了用于模式分类的新型监督特征提取方法。我们的新型架构允许通过重建深度堆叠的第二代小波自动编码器来对数据集类别进行分类。将曲波池化 (CP) 与 Adam 梯度计算方法相结合可以提高自动编码器的准确性。在本研究中,我们利用 Haar 曲线波 (CurvPool-AH) 和 Shannon 曲线波 (CurvPool-AS) 构建了 Adam CP。该网络可以通过多个 SGW 自动编码器实现,最终在最后一层使用一个 Softmax 分类器。我们还发现 CurvPool 表现相当不错
引言胶结对于确定陶瓷修复的最终成功和寿命至关重要。1,2陶瓷贴面失败的主要原因与胶结过程有关。3选择用于胶结的树脂水泥的足够聚合会影响修复和界面的应力传播。4固定树脂水泥被认为是胶结陶瓷饰面的更好材料。5受控的工作时间,容易去除过量的材料,对操作员的技术敏感性低,薄膜厚度,良好的物理特性,低溶解度和良好的粘附是支持选择轻固化树脂水泥的某些特征。6,7固定过程对于这类树脂水泥的适当聚合至关重要,影响了陶瓷贴面的长期临床性能