§ 流感疫苗有效期一年, 每年需接种一次。凡9 岁以下从未接种过流感疫苗的儿童, 均须接种两剂流感疫苗, 而两剂疫苗的接种时间须至少相隔四个星期§ 不宜接种流感疫苗人士:对鸡蛋丶新霉素(Neomycin) 丶庆大霉素(Gentamycin) 或流感疫苗有过敏反应的人士;在注射当日身体不适或发烧的人士都不宜接种。 § 曾对鸡蛋有严重过敏反应的人士, 应由专业医护人员在能识别及处理严重敏感反应的适当医疗场所内接种。流感疫苗内虽含有卵清蛋白(即鸡蛋白质) , 但疫苗制造过程经过反覆纯化, 卵清蛋白的含量极少, 即使对鸡蛋敏感的人士, 在一般情况下亦能安全接种。 § 流感疫苗十分安全,除了接种部位可能会出现痛楚、红肿外,一般并无其他副作用。部分人士在接种后6 至12 小时内可能会出现发烧、肌肉疼痛,以及疲倦等症状,这些症状通常会在两天内减退。如持续发烧或不适,请咨询医生意见。若出现罕见的风疹块、 口舌肿胀、手脚麻痹、无力及呼吸困难等不良反应,患者必须立即求医。 § The vaccine is effective for 1 year; you should take the influenza vaccine annually. Children under 9 years old who have never received any influenza vaccine are recommended to have 2 doses of influenza vaccine with a minimum interval of 4 weeks § People who are allergic to eggs, Neomycin, Gentamycin or flu vaccine; and/or people who have fever should not take influenza vaccine 。 § Individuals with a history of anaphylaxis to eggs should have seasonal influenza vaccine administered by health care professionals in appropriate medical facilities with capacity to recognize and manage severe allergic reactions. Influenza vaccine contains ovalbumin (a chicken protein), but the vaccine manufacturing process involves repeated purification and the ovalbumin content is very little. Even people who are allergic to eggs are generally safe to receive vaccination 。 § Inactivated influenza vaccine is very safe and usually well tolerated, apart from occasional soreness, redness or swelling at the vaccination site. Some people may experience fever, muscle pain, and tiredness beginning 6 to 12 hours after vaccination. These usually improve in two days. If fever or discomfort persists, please consult a doctor. Severe allergic reactions like hives, swelling of the lips or tongue, and difficulties in breathing, or serious adverse events such as limb numbness or weakness are rare but require emergency consultation.
电感器是一种具有频率相关阻抗特性的电气元件;电感器在低频时表现出低阻抗,在高频时表现出高阻抗。虽然“理想”运算放大器输出阻抗特性为零,但“实际”放大器的输出阻抗是电感性的,并且像电感器一样随着频率的增加而增加。EL5157 的输出阻抗如图 2 所示。使用运算放大器的应用中的一个常见挑战是驱动电容负载。之所以有挑战性,是因为运算放大器的电感输出与电容负载一起形成 LC 谐振槽拓扑,其中电容负载电抗与电感驱动阻抗一起导致当反馈围绕环路闭合时产生额外的相位滞后。降低相位裕度会导致放大器振荡的可能性。振荡时,放大器会变得非常热,并且可能会自毁。针对这一挑战,有几个非常著名的解决方案。1) 最简单的解决方案是在输出端串联一个电阻,以强制反馈来自放大器的直接输出,同时隔离无功负载。这种方法的代价是牺牲负载上少量的输出电压摆幅。2) 另一个直接的解决方案是应用“缓冲网络”。缓冲网络是一个与电容负载并联的电阻和电容,在负载上提供电阻阻抗以减少输出相移;提供额外的稳定性。
课名课名课名建议修课顺序可用下列课程替代建议修课顺序机器学习建议修课顺序建议修课顺序建议修课顺序可用下列课程替代建议修课顺序1或2机器学习特论3人工智慧伦理、法律与社会1或2人工智慧伦理与人权1或2人工智慧伦理与人权33或4深度学习实验3或4深度学习实验3或4深度学习实验3或4深度学习实验3或4深度学习实验3或4影像处理概论3或4影像处理概论影像处理概论影像处理概论影像处理概论影像处理概论影像处理概论影像处理概论数位影像处理数位影像处理数位影像处理数位影像处理数位影像处理影像处理、电脑视觉及深度学习概论学习概论学习概论学习概论学习概论学习概论学习概论影像处理与机器人视觉影像处理与机器人视觉影像处理与机器人视觉影像处理与机器人视觉影像处理与机器人视觉计算机视觉理论电脑视觉实务与深度学习计算机视觉理论电脑视觉实务与深度学习电脑视觉实务与深度学习电脑视觉实务与深度学习电脑视觉实务与深度学习电脑视觉实务与深度学习电脑视觉实务与深度学习电脑视觉实务与深度学习电脑视觉实务与深度学习电脑视觉与深度学习电脑视觉实务与深度学习电脑视觉实务与深度学习电脑视觉与深度学习电脑视觉与深度学习电脑视觉实务与深度学习电脑视觉实务与深度学习电脑视觉实务与深度学习电脑视觉实务与深度学习电脑视觉与深度学习电脑视觉与深度学习电脑视觉与深度学习电脑视觉与深度学习电脑视觉与深度学习电脑视觉与深度学习电脑视觉与深度学习高等电脑视觉高等电脑视觉电脑视觉与深度学习电脑视觉与深度学习3 3 3 3 3 3或4或4或4或4或4或4或5智慧医疗
我要感谢我的同事 Edivânia Ferreira Silva 和我的同事 Mateus Cortez 帮助我进行解码。感谢芯普微电子给我参加专业布局课程的机会(对我这项工作帮助很大)。特别感谢我的姐姐、母亲、叔叔、阿姨、表兄弟和朋友,他们在整个旅程中一直激励着我。
40 Ana Saplan,“会合和服务行动执行联盟 (CONFERS)”,国防高级研究计划局,2021 年 6 月访问,https://www.darpa.mil/program/consortium-for-execution-of-rendezvous-and-servicing-operations#:~:text=CONFERS%20envisions%20a%20permanent%2C%20self,Government%20about%20on%2Dorbit%20servicin g.&text=The%20Agency%20also%20intends%20by,commercial%20on%2Dorbit%20servicing%20organizations。
为了实现经济发展与环境利益之间的双赢局势,本文构建了一个四方进化游戏模型,包括政府,两个同质港口和基于进化游戏理论的运输公司。根据雅各比矩阵,通过计算四方的回报矩阵并复制动态方程,我们研究并讨论了五个不同情况下模型的可能稳定点。使用MATLAB模拟游戏,并选择相关参数进行灵敏度分析。结果表明,当政府不执行政策时,环境利益将最大化,并且港口和航运公司使用岸上电气系统(即稳定点E12(0,1,1,1,1))。同时,通过分析端口尺寸敏感性,当t = 1.116时,大规模的端口演化趋向于0,而小规模的端口则上下闪烁,从而得出这样的结论,即小规模的端口具有更大的潜力来实施岸上的负责人,并能够获得较快的福利效果。这项研究为实施岸上电气系统提供了理论支持,同时指出了政府在促进岸上电动机开发中的关键作用。它提供了参考,以有效促进在减少碳排放量的情况下使用岸上电动机的使用,这对于在小型端口中实施海岸电气尤其重要,并有助于最大程度地提高港口操作的环境利益。
8.1.概述 ...................................................................................................................................................................... 16 8.2.功能框图 ...................................................................................................................................................... 16 8.3.特性描述 ...................................................................................................................................................... 16 8.3.1.脉冲友好 ............................................................................................................................................................. 16 8.3.2.斜率提升 .................................................................................................................................................... 17 8.3.3.共模输入级 ................................................................................................................................................ 17 8.3.4.EMI 抑制 ........................................................................................................................................................................... 18 8.3.5.驱动电容负载 ........................................................................................................................................................... 18 8.3.6.热保护 ........................................................................................................................................................... 19 8.3.7.电气过载 ........................................................................................................................................................... 19
电源电压,V DD+ (见注释 1)8 V 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。电源电压,V DD– (见注 1)–8V。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。差分输入电压,V ID (见注释 2)± 16 V 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。输入电压,V I (任何输入,见注释 1)V DD– – 0.3 V 至 V DD+ 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。...... div>...输入电流,I I (每个输入) ± 5 mA .. < /div>............。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.输出电流,I O ± 50 mA ..........< div> 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.流入 V DD+ 的总电流 ± 50 mA .... div>........。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。V DD– ± 50 mA 输出的总电流。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。25°C(或以下)时的短路电流持续时间(见注3)无限制。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。连续总耗散 请参阅耗散额定值表。。。。。。。。。。。。。。。。。。。。。。。。。。。。...................工作自然空气温度范围,TA:C后缀0°C至70°C。......。。。。。。。。。。。。。。。。。。。。。。。。........我后缀 –40 ° C 至 125 ° C .................................Q 后缀 –40 ° C 至 125 ° C .。。。。。。。。。。。。。。。。。。。。。。。。...........M 后缀 –55 ° C 至 125 ° C ............。。。。。。。。。。。。。。。。。。。。。。存储温度范围,T stg –65 ° C 至 150 ° C 。............。。。。。。。。。。。。。。。。。。。。。。。。。...... div>......引线温度 1,6毫米(1/16 英寸)距离外壳 10 秒:D、N、P 和 PW 封装 260 ° C 。......J、JG、U 和 W 封装 300 ° C 。。。。。。。
• Teledyne e2v:每个 Cortex-A72 内核均提供 4.72 DMIPS/MHz 的性能,当四个内核以 1.8 GHz 运行时,最终功率可达 34,000 DMIPS 或大于 45,000 CoreMarks®。
本文研究了卫星的在轨寿命。研究涵盖了不同的轨道状态、通用任务分析工具 (GMAT) 模拟和数据,以确认低地球轨道因素对卫星衰减的影响。太阳活动是卫星寿命的一个关键决定因素,影响低地球轨道 (LEO) 卫星所受的大气阻力。研究证实了阻力因素(横截面积和轨道高度)与卫星寿命之间的相关性,强调需要优化这些因素以延长在轨运行以及随后快速脱轨。本研究旨在为更细致地了解大气阻力因素和卫星动力学做出贡献。简介卫星已成为现代世界的重要组成部分,提供从通信和导航到天气预报和地球观测等广泛的关键服务。然而,卫星并不是太空中的永久固定装置。特别是在低地球轨道,卫星可能因大气阻力、潮汐扰动和太阳效应而逐渐失去轨道高度,并最终重新进入大气层并烧毁。因此,卫星在轨寿命是其设计、运行和任务规划的关键因素。