新型B-丙氨酸酶抑制剂(BLIS)的抽象设计是应对革兰氏阴性细菌中头孢菌素和碳青霉烯耐药性威胁的当前接受的策略之一。硼酸过渡状态抑制剂(BATSIS)是竞争性的,可逆的BLI,可以作为新型治疗剂提供希望。在这项研究中,两种A-氨基二氧二氧二苯甲酰烷酸转变状态抑制剂(S02030和MB_076)的活性针对代表KPC(KPC-2)和CTX-M(CTX-M-96,CTX-M-15--15-type-type-Spectrum B-bb-bb-bb-bb-casse)[ES)[ES)在纳摩尔范围内测量了两种抑制剂的50%抑制浓度(IC 50 s)(2至135 nm)。对于S02030,CTX-M-96(24,000 M 2 1 S 2 1)的K 2 / K是KPC-2的报告值的两倍(12,000 M 2 1 S 2 1);对于MB_076,K 2 / K值范围从1,200 m 2 1 S 2 1(KPC-2)到3,900 m 2 1 S 2 1(CTX-M-96)。具有MB_076(1.38-Å分辨率)和S02030的KPC-2的晶体结构,以及CTX-M-96的硅模型中,这两个蝙蝠表明,CTX-M-96 - 96 - S02030和CTX-M-96和CTX-M-96 - CTX-M-96 - CTX-M-96 - MB_076复合物的相互作用总体上是2级的结构。 KPC-2 - MB_076。S02030和MB_076围绕硼原子的四面体相互作用,与S70,S130,N132,N170和S237创建了一个有利的氢键网络。但是,从KPC-2中的W105到CTX-M-96中的Y105和CTX-M-96中缺失的残基R220改变了抑制剂在CTX-M-96的活性位点的排列,部分解释了动力学参数的差异。在这里研究的新型BATSI脚手架提高了我们对结构活性关系(SARS)的理解,并说明了B-乳糖果酶抑制剂设计的新方法的重要性。
凝聚微孔网络在气体和能量存储、传感和催化应用方面受到了广泛关注。1 9,9'-螺二芴基序对电子应用尤其重要,2,3 也已成为一种流行的结构单元,可作为扭曲位点来创建具有内在微孔性的材料。4-23 Yamamoto 将易得的 2,2',7,7'-四溴-9,9'-螺二芴与 Ni(COD) 2 偶联,可产生非常高表面积的微孔网络,并且在类似条件下与刚性二溴化芳香支柱进行共聚,可为材料提供可调的光学和气体吸附性能。24,25 其他方法也从 2,2',7,7'-四溴-9,9'-螺二芴试剂开始产生了均聚物或共聚物网络。目前对基于 9,9'-螺二芴更四面体导向的 3,3',6,6' 位聚合的缩合网络的探索相对较少,这可能是由于在 3,3',6,6' 位选择性卤化固有的挑战性所致。最近在 3,3',6,6' 位选择性卤化的一项策略是先在 2,2',7,7' 位进行初始甲氧基化,然后与 I 2 /PIFA 反应,得到 2,2',7,7'-四碘-3,3'6,6'-四甲氧基-9,9'-螺二芴前体。26 对该前体的进一步修饰产生了核碱基修饰的四足体。 27 随后,四炔通过 Sonogashira 和乙炔偶联反应聚合,生成螺二芴骨架,可作为 Pd 和 Pt 催化氢化的载体。28 3,3',6,6'-
X Na 2 S-(100- X)GES 2玻璃的性质,代表了全固定电池的有希望的系统,可以从各种实验和理论技术中进行彻底研究。离子传导是根据成分的函数测量的。它揭示了一种具有低Na含量的阈值组成的阈值构图。相比之下,温度演化表明典型的Arrhenius行为指示NA动作通过相邻位点之间的跳跃实现。三个特定组成(0%,33%和66%Na 2 s)的特征是X射线衍射和基于密度功能的分子动力学的组合。测量和计算不同的结构特性,例如结构因子,成对分布函数,角度分布,配位数和邻居分布。与实验的比较揭示了在真实和相互空间中相当好的一致性。短期顺序被发现由由GES 4/2四面体制成的基本网络(ge和s的配位数约为4和2),这些网络在添加的Na添加后逐渐解散,这也会导致环结构的分解。na的配位数是松散定义的,尤其是在高NA含量下。还发现了碱模型的硅酸盐的典型特征,例如存在类似通道的动力学,键长的分布在GE和桥接或非桥接硫之间是不同的,具有n键硫的ge tetrahedra的分布q n,以及在网络中低温下的na键(ge)和Na Dynamics的网络中的低温。然而,与这种原型玻璃不同,硫代钠钠含有同质的GE-GE键,这些键是特异性的GE硫酸盐,并导致孤立的(ge 2 S 6)6⊖阴离子高Na含量。
研究结构缺陷及其对光学材料光学性质的影响是至关重要的,因为在制备用于显示应用的材料时会涉及不同的方法。镧系离子掺杂是一种简单的结构探测策略,它有助于识别结构缺陷。使用 Pechini (C 2 SP) 和水热法 (C 2 SH) 制备纯和铽 (Tb 3 +) 掺杂的 Ca 2 SiO 4 (C 2 S) 粒子。从 SEM 图像中可以看出,Tb 3 + 掺杂的 C 2 SP 粒子比 C 2 SH 粒子更高度聚集。TEM 研究证实,在 180 和 200 C 的高水热温度下制备的 C 2 SH (C 2 S:180H 和 C 2 S:200H) 的粒度减小。 Tb 3 + 掺杂的 C 2 S:180H 和 C 2 S:200H 发生荧光发射猝灭。与 Tb 3 + 掺杂的 C 2 SP、C 2 S:180H 和 C 2 S:200H 相比,在 140 C 下制备的 Tb 3 + 掺杂的 C 2 SH 的发射强度较高。在 X 射线光电子能谱 (XPS) 价带谱中,实验评估了与纯 C 2 SP 和 C 2 S:180H 四面体硅酸盐的上能级价带谱相关的 O2p 轨道的变化。由于硅酸盐单元的扭曲导致对称性降低,从而猝灭了发射,这已由 XPS 价带谱和 Tb 3 + 发射线证实。这项研究表明,与水热法相比,Pechini 法更适合制备 Tb 3 + 掺杂的 C 2 S 荧光粉,特别是在高温下用于固态显示器和闪烁体应用。© 2020 作者。由 Elsevier BV 代表河内越南国立大学提供出版服务。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
第一单元:热力学:热力学定律、系统、热力学函数、系统状态、平衡、焓、不同过程中所做功、C p 、C v 、绝热 PVT 关系、卡诺循环、熵概念、克劳修斯-克拉珀龙方程及其应用、麦克斯韦关系、自由能概念、化学势、麦克斯韦关系。第二单元:电化学与腐蚀:电化学电池、电极电位的起源、标准电位、能斯特方程、EMF 序列、可充电电池、腐蚀类型、电流序列、阴极和阳极反应、差动曝气电池、防腐方法。第三单元:动力学与溶液化学:化学反应动力学、一级、二级反应、可逆反应、连续反应和平行反应。稳态近似、阿伦尼乌斯方程、链式反应、光化学反应、溶液化学和依数性质、实数和理想溶液、扩散、渗透、渗透压、蒸汽压降低、沸点升高、凝固点降低、异常分子量、缔合和解离度。UNIT-IV:化学键合与配位化学:无机化学中的键合模型、分子轨道理论(MOT)、价键理论(VBT)和晶体场理论(CFT)、配位化学:配位数、螯合效应、EAN 规则、八面体、四面体和方平面复合物中“d”轨道的分裂、生物系统中的生物无机和金属的例子UNIT-V:工业化学:聚合物:聚合物的类型、聚合、应用、重要的合成聚合物。耐火材料和陶瓷材料:分类、制造和应用、水处理、空气污染和控制技术。参考书:1. Shashi Chawla 著《工程化学教科书》2. S. Glaston 著《物理化学教科书》。3. Atkins 著《物理化学》。4. Jain & Jain 著《工程化学》
ummary,对磁铁(MT)调查的需求正在增加。对于日本的大多数可开发地热场,复杂的地下结构和地形违规行为在提高准确性方面面临着重大挑战。在日本的地热领域,我们使用有限元建模代码femtim进行了高分辨率地形进行3-D反转进行了高密度MT调查,以解决这些问题。此外,被调查的地区面临着可能影响我们成功的巨大文化噪音挑战。为了减轻这种情况,我们延长了收购时间并应用了其他技术流程。我们使用短时傅立叶变换分析了数据,以识别与时间相关的噪声条件,从而使我们能够更严格地在死带频率上选择交叉动力。进一步平滑处理的声音曲线,以作为更合理的建模输入。解决了噪声问题后,我们在反转中利用了阻抗和威先令的完整组成部分。使用非结构化的四面体元素来产生高分辨率地形,最大程度地减少了地形畸变对MT传递函数的影响。变形张量也被认为是目标函数中的变量。我们使用1-D OCCAM的反转结果来设置先前模型中均匀半空间的值。通过调整权衡参数,使用L-Curve方法定义了最佳模型。总体而言,倒电阻率模型在发声曲线和感应箭头图中都很好地拟合了观察到的数据。我们将最终的电阻率模型与来自2D倒置重力数据的电阻率对数和密度曲线进行了比较。从我们的模型中提取的电阻率分布与记录数据一致,并且更深的电阻率结构和密度曲线中的掩埋体形状相似。此案例证明了MT调查及其在日本的前景的3-D反转中的商业调查进展。关键字:Magnetotelteruric方法;地热场;女性地球物理探索; 3D反转
BP 在许多领域都具有广泛的应用,如耐腐蚀和耐热涂层 [4,5]、光催化剂和电催化剂 [6,7],以及热管理 [1] 和极紫外光学应用。 [8] 最近,BP 被认为是一种潜在的 p 型透明导电材料 (TCM)。 [9] 这是一个特别有趣的前景,因为在光学透明材料中获得高 p 型电导率仍然是一个尚未解决的挑战。 [10,11] 与其他 p 型 TCM 候选材料不同,多位作者报道了 BP 中的双极掺杂。 [3,5,9,12,13] 因此,BP 可能是具有 p 型和 n 型掺杂能力的透明材料的独特例子。BP 结晶于具有四面体配位的金刚石衍生的闪锌矿结构中。由于B和P之间的电负性差异很小,BP是共价固体,其能带结构与金刚石结构中的Si和C的能带结构非常相似。主要区别在于BP的基本间接带隙大小适中(≈2.0 eV)[14–16],这主要是由于键长适中。虽然该带隙对应于可见光,但BP的直接带隙要宽得多,位于紫外区(≈4.3 eV)。[15–17]预计BP在室温下的间接跃迁很弱[15],这是使BP薄膜足够透明以用于许多TCM应用的关键因素。例如,根据包括电子-声子耦合在内的第一性原理计算,100nm厚的BP膜预计会吸收微不足道的红黄光和不到10%的紫光。 [15] 就电学性质而言,BP 具有由 p 轨道产生的高度分散的价带,从而确保较低的空穴有效质量(0.35 me)。[9] 与金刚石不同,BP 的价带顶位于相对于真空能级相对较浅的能量处。浅而分散的价带通常与高 p 型掺杂性相关,因为更容易形成未补偿的浅受体缺陷。[18,19]
可控的方式。[6] 然而,自上而下的技术不可扩展,且大多数技术耗时耗力,从而阻碍了它们的潜在应用。特别是手性微结构可以通过调制飞秒激光焦点的单次曝光快速制造。[7] 其几何形状严格由可实现的结构化焦点决定,并且得到的表面质量相当差。相反,自下而上的方法提供了一种经济高效且可扩展的替代方法,通过由不同材料(如共聚物、[8] 肽、[9] 纳米粒子 [10] 和 DNA 四面体 [11] 制成的亚基的顺序自组装来创建分层纳米结构。不幸的是,由于自发自组装过程的固有特点,对几何形状、空间排列、规律性和螺旋性的精确控制非常困难。自上而下和自下而上相结合的混合制造技术的最新进展有望克服上述一些限制。[12] 特别是,通过介导弹性毛细管相互作用的毛细管力驱动自组装引起了人们的极大兴趣,因为它具有简单性和可扩展性的独特优势,[13] 并且在一定程度上已用于混合制造策略。基于光刻的技术已经实现中尺度刷毛的制造,并且通过利用弹性毛细管聚结已经得到高度有序的螺旋簇。[14] 然而,由于圆形原纤维具有旋转对称性,因此单个簇所实现的手性是随机的。虽然可以通过将横截面渲染为矩形来获得特定的手性重排,但手性的可调性仍然有限。利用电子束光刻技术实现10纳米级的纳米柱,然后通过毛细管力诱导的纳米内聚力进行自组装。[15] 利用多光束干涉光刻技术,结合溶液蒸发过程中的毛细管力,制备并组装大面积图案化微柱。[16] 我们之前的研究表明,可以利用毛细管力来驱动直柱生成具有高度可控性的分级微结构。[17] 然而,由于毛细管力在微尺度上很难利用,它们都无法实现可控的手性结构。因此,开发一种简便、可控、高效的功能手性结构制备方法是十分有必要的。
摘要:已经提出了许多基于铁的超导体的理论模型,但是通常缺少基于模型的TC计算。We have chosen two models of iron-based superconductors in the literature and then compute the Tc values accordingly: Recently two models have been announced which suggest that superconducting electron concentration involved in the pairing mechanism of iron-based superconductors may have been underestimated, and that the antiferromagnetism and the induced xy potential may even have a dramatic amplification effect on electron-phonon coupling.我们使用散装FESE,生命值和Nafeas数据根据这些模型来计算TC,并测试合并模型是否可以预测纳米结构的FESE单层的超导过渡温度(T C)。为了证实文献中最近宣布的XY电位,我们创建了一个两通道模型,将电子的动力学分别叠加到上下四面体平面。我们的两通道模型的结果支持文献数据。虽然科学家仍在寻找可以描述所有基于铁的超导体的配对机制的通用DFT功能,但我们基于ARPES数据,以提出DFT功能的经验组合,以修改在超导状态中电子 - phonon散射矩阵的经验组合,以确保所有基于铁基于铁的超级超级超级超级电体的超级导向,均在计算中均包含了Inccumcation inccumigation in Concuctivation in Concuctivation in Concuctivation in Concuctivation in Concuctivation in Concutivection in Concutivection中。关键字:基于铁的超导性我们的计算模型考虑了抗磁磁性的这种放大效果以及对电子散射矩阵的校正以及分层结构的异常软平面晶格振动,这使我们能够计算出对压力的合理性,从而可以计算出对寿命,NAFEAS和FESE的理论值得良好的实验。更重要的是,通过考虑FESE单层与其SRTIO 3底物之间的界面效应,作为附加的增益因子,我们计算出的T C值高达91 K高,并提供了证据,证据表明,在T c范围内,最近在此类单层中观察到的强t c值可以从ARPES范围内的电子中造成100 k的贡献。
1。Contents and Qualification Objectives Contents • Coordination chemistry : mechanisms of reactions of coordination compounds (ligand exchange, electron transfer reactions) • Reaction steps in homogeneous catalysis: oxidative additions and reductive eliminations, σ-bond metatheses, insertion and elimination reactions • Transition metal compounds : metal hydrides and metal organyls, carbene complexes, olefin complexes (synthesis, structure, bonding and reactions) - metal activation of industrially relevant substrates, like dihydrogen, alkanes, carbon monoxide, olefins • Main group element organyls : element organyls of the boron group (triels) – hydroboration and carbometallation reactions • Structural chemistry of inorganic solids : structural arguments, packing types in solid compounds, phase transitions, systematic通过填充八面体和四面体间隙,分子晶格,链条结构,分层结构,网络结构,直径的结构来扣除从密集的球体包装开始的结构。• Intermetallic phases and compounds : alloys, Zintl phases and Zintl salts, polycationic and polyanionic clusters of the main group elements, Wade's rules • Subvalent transition metal compounds : magnetic phenomena, metal-metal bonding, metal-metal multiple bonding, metal clusters, condensation of clusters, metal rich compounds, cluster connection • Solid-state materials : precious stones,它们的使用和生产,钻石和钻石合成,富勒烯,碳纳米管,石墨烯•固体中的化学键:电子带结构理论的介绍,状态的密度,晶体轨道。课程格式资格确定目标•获取对现代无机分子化合物的最重要类别的增强知识•对O过渡金属氢化物,基基和碳复合物的更深入了解同质催化中的基本步骤o同质催化的基本步骤,小分子激活o结构和结构型固体式和化学构成的构建和化学构成•形成型结构和化学的结构•化合物•化学•化合物•化学•化合物•化学•化学•在讨论未知化合物的讨论中获得的知识的使用•信息管理•批判性思维•解决问题的技能•彻底的知识和分析技能,用于计划复杂化学分子的合成途径•对复杂问题的分析和反思•增强交流的能力2。