固态合成代表了溶液 - 相化学的替代方案,可以为通常无法通过常规方法提供的材料提供途径。但是,在高压条件下,多个竞争反应途径使化学均匀系统的靶向合成成为挑战。纳米读,通过压缩芳族碳氢化合物形成的一维钻石聚合物为以控制和可预测的方式进行高压反应提供了独特的机会。我们假设,通过仔细考虑分子堆叠和分子间力(例如,H键),可以形成化学均匀的纳米读物,以保留精确的化学功能。在此,我们通过顺序[4 + 2] Diels Alder Cycloadition反应报告了2,5-二甲基辅助酸的可扩展固态聚合。由此产生的纳米读产品装饰有高密度的吊坠基团,为后合成后处理和功能应用提供了新的机会。的过渡金属配位被证明了功能化的线程,代表了纳米读作为独立合成子的利用的概念证明,以及新颖的,扩展的扩展多维网络的可能性。虽然基于溶液的化学合成是可推广的,但由于诸如几何/空间约束和多个能量竞争的途径之类的局限性,固态的受控有机反应在固态中具有挑战性。11-16碳纳米读是一类新型的晶体,在高压下形成的一维SP 3碳纳米材料。1-9然而,具有与传统方法相当的固态中有机反应的一般合成控制将使一系列新的化学物种和合成子具有挑战性或无法获得基于溶液的化学作用。10高压合成代表了控制固态有机转化的一种新兴方法,该方法使新反应能够产生新的结构基序和新型的键合环境(例如,SP 3 3碳富含碳富含碳的结构)。由于通过缓慢的各向异性压缩苯的初始形成,因此已经开发了几种合成策略,以限制潜在反应途径的数量,并通过选择性环加成促进化学均匀产物的形成。18-24,由于纳米读的骨架仅在一个方向上延伸,因此这些超薄碳材料被预测可以将钻石的最高物理特性与传统聚合物的灵活性结合在一起。25-30可以通过仔细选择小分子前体(例如,苯,17,31吡啶,32吡啶嗪23)来精确控制纳米读的化学成分,从而使它们比可比的纳米材料(例如,纳米管)具有潜在的优势。因此,纳米读的可能应用是多种多样的,包括新颖的储能和先进的结构材料。26,33,34然而,含有均匀吊坠官能团的有序纳米读的形成仍然是一个重大挑战。在纳米读形成条件下,吊坠基团容易产生侧面反应,可以产生各种粘结基序。这种副反应会导致化学不均匀的材料形成,从而导致远距离顺序和精确的化学功能丧失。19,35一种可靠的合成纳米读的方法
羟基烷酰甲烷,姜黄素III)(3-5%)一起称为姜黄素(Anand等,2008)。此外,针对姜黄素的几种互变异物(包括酮和烯醇形式)得到了区分,姜黄素受pH和溶液或固态的极性变化的影响(Kawano等,2013)。许多科学研究都支持姜黄素的显着特性,包括抗微生物,抗carcino-genic,抗炎和抗氧化活性(Prasad等人,2014a; Shakibaei等,2014,2014,2007; Shakibaei等,2015)。姜黄素已通过广泛的实验室和临床实验(例如Shakibaei等人)作为抗癌剂良好。(2015)表明,姜黄素在体外增强了5-氟尿嘧啶对结直肠癌细胞系的抗肿瘤活性(Shakibaei等,2015)。癌症干细胞(CSC)具有自我更新,分化和其他干细胞特性的能力,被视为新兴的治疗靶标(Chen等,2013; Subramaniam et al。,2010)。已经发现,作为癌细胞的一小部分癌症干细胞在癌症的起始和进展中起着突出的作用,血管生成,血管生成,侵袭,转移,对癌症的治疗和复发性(Gerger等,2011; Klarmann et al。 Zhao等,2011)。最近,各种癌症干细胞生物标志物,例如CD44,CD133,ALDH1在几种类型的癌症中进行了广泛的研究(Buhrmann等,2014; Klonisch等,2008; Shakibaei等,2014)。在过去的十年中发表的大量研究支持了姜黄素的潜力及其修改形式,可以单独或与其他抗癌剂结合使用几种类型的癌细胞培养物中的CSC(Buhrmann等,2014; Li and Zhang and Zhang,2014; Shakibaei es; shakibaei等,2014)。Cur- curmin对CSC的影响可能与其直接或间接影响自我更新途径,肿瘤形成,肿瘤微环境,酶活性和细胞表面标记的能力有关(Buhrmann等,2014; Li and Zhang,li and Zhang,2014; Shakibaei; shakibaei等,2014)。在多种同工型中表达的CD44糖蛋白参与了许多与癌症所有阶段有关的细胞信号通路(Buhrmann等,2014; Williams等,2013)。因此,CD44已被作为预防癌症,检测,预后和筛查癌症干细胞对各种治疗模型的反应的参数(Blacking,2013; Negi等,2012)。糖蛋白CD133的表达与癌细胞中的干细胞样性质有关。的确,其对癌细胞的表达据报道是预后和预测治疗结果的重要标记(Grosse-Gehling等,2013; Glumac和Lebeau,2018)。酶醛脱氢酶1(ALDH1)可以保护细胞免受氧损伤的影响,并通过将视黄醇转化为视黄酸,参与调节细胞增殖(Huang等,2009)。aldh1被作为人类结肠癌的潜在生物标志物,被用作预后标记(Chen等,2011; Tomita等,2016)。使用姜黄素作为治疗剂受到其生物效率和生物效能感的限制,该生物效率受到大量研究项目的影响。迄今为止从体外和体内研究可用的所有证据都表明,特定的担忧是姜黄素的稳定性和生物利用度较低(Anand等,2007)。然而,更好地了解姜黄素在细胞培养基或人体室中的稳定性(例如,血液,组织器官)是新型治疗发展的重要预先预期,因为姜黄素的浓度与影响生物学系统的能力之间存在牢固的关系。的确,已经开发了几种策略,例如佐剂,脂质体,磷脂复合物,磷脂复合物,纳米颗粒或姜黄素的结构类似物,以克服上述问题(Prasad等,2014b,2014b)。在本研究中,研究了Cur- cur-在体外研究的时间和剂量依赖性对癌症干细胞标志物CD44,CD133和ALDH1的表达的依赖性作用。此外,在不同培养系统中检查了姜黄素和姜黄素的稳定性。