HER 动力学缓慢,而 Ni 则具有一些积极特性,例如高导电性、稳定性和相对较高的地球丰度。[1,3] 自 20 世纪 60 年代以来,人们做出了巨大努力来提高 Ni 基电催化剂的催化活性,采用了各种有希望的候选材料,例如镍的氢氧化物、二硫属元素化物、磷化物、碳化物等。[1,4] 通常,可以通过调整催化剂的形貌(例如,生产纳米线、纳米片、纳米颗粒等)来增加活性表面积,以及改善可用活性位点的固有活性(例如,通过合金化、掺杂、缺陷工程等)来增强催化活性。对于镍而言,形成合金是改变形貌和内在活性的常用策略,其中 NiCo、NiFe 和 NiMo 混合物已被鉴定为很有前途的 HER 电催化剂。[2b,4,5] 多组分合金的使用是二元体系的自然延伸,其中已经研究了三元合金,例如 CuAlNi、NiMoFe 和 NiMoW[2b,4],尽管每种金属的作用尚不完全清楚。在常见的 Ni 合金中,NiFe 混合物通常表现出更好的催化性能,特别是,在这些合金中添加 Mo 可以降低起始电位,这是由于有利的氢-金属相互作用和增加活性位点的数量。[4,6] 因此,NiFeMo 合金是最有前途的 HER 电催化剂之一,主要通过热液工艺[7]或电沉积生产。 [8] 合成技术的选择对催化剂的形貌有显著的影响,一般来说,不同的合成技术具有不同的最佳 Ni:Fe:Mo 金属比。此外,这些技术的特点是产量低、材料负载有限,使其在大规模应用中的使用变得复杂。因此,寻找一种能够生产三金属合金的可扩展技术对于氢经济的发展至关重要。溶液前体等离子喷涂 (SPPS) 是一种很有前途的技术,它有可能生产出各种具有适合作为电催化剂的特性的涂层 [9]。因此,在本研究中,我们表明,在等离子喷涂过程中使用含有 Ni、Fe 和 Mo 金属盐的液体前体
摘要 高熵 (HE) 超高温陶瓷有机会为未来的应用铺平道路,推动能源转换和极端环境屏蔽领域的技术优势。其中,HE 二硼化物因其固有的各向异性层状结构和耐受超高温的能力而脱颖而出。在此,我们采用原位高分辨率同步加速器衍射对大量多组分组合物进行研究,其中包含四到七种过渡金属,目的是了解不同组分或合成过程后的热晶格膨胀。结果,我们能够根据金属的组合将平均热膨胀 (TE) 从 1.3 × 10 − 6 控制到 6.9 × 10 − 6 K − 1,平面内与平面外 TE 比的变化范围为 1.5 到 2.8。
摘要。对 5754、6061 和 7075 铝合金进行了 RCS 工艺提高机械强度的潜力评估,这三种铝合金呈现出与各自合金元素相关的不同硬化机制。这项工作比较了不同合金通过 RCS 处理后织构和机械性能的演变。通过显微硬度测量、不同温度和应变速率下的拉伸试验来评估机械性能,以评估应变速率敏感性。结果表明,经过两次 RCS 处理后,6061 和 5754 合金在 300°C 下表现出相对较高的应变速率敏感性。此外,5754、6061 和 7075 合金的硬度分别增加了 27%、22%、15%。显示出由于不同的硬化机制而提高机械阻力的潜力。此外,通过 X 射线衍射获得极图并计算其取向分布函数来表征晶体织构。结果表明,三种铝合金表现出相同的趋势,即初始织构组分得以保留,但织构化体积有所减少。
在电磁干扰屏蔽、天线和电化学能存储与转换电极等应用中,MXene 薄膜需要具有高电导率。由于采用基于酸蚀的合成方法,因此很难分解化学成分和薄片尺寸等因素对电阻率的相对重要性。为了了解内在和外在因素对宏观电子传输特性的贡献,对 Ti y Nb 2- y CT x 系统中的固溶体进行了控制成分和结构参数的系统研究。特别是,我们研究了金属(M)位成分、薄片尺寸和 d 间距对宏观传输的不同作用。硬 x 射线光电子能谱和光谱椭圆偏振法揭示了 M 位合金化引起的电子结构变化。与光谱结果一致,低温和室温电导率以及有效载流子迁移率与 Ti 含量相关,而薄片尺寸和 d 间距的影响在低温传输中最为突出。该结果为设计和制造具有广泛电导率的 MXene 提供了指导。
开发了铁电纤锌矿氮化铝钪 (Al 1 − x Sc x N) 固溶体的 Landau – Devonshire 热力学能量密度函数。该函数使用现有的实验和理论数据进行参数化,能够准确再现块体和薄膜的成分相关铁电特性,例如自发极化、介电常数和压电常数。发现纤锌矿结构保持铁电性的最大 Sc 浓度为 61 at. %。对 Al 1 − x Sc x N 薄膜的详细分析表明,铁电相变和特性对基底应变不敏感。这项研究为新型铁电纤锌矿固溶体的定量建模奠定了基础。
十多年前,德雷塞尔大学发现了二维 (2D) Ti 3 C 2,从此创建了一个新的 2D 过渡金属碳化物、氮化物和碳氮化物家族 [1]。由于采用自上而下的选择性蚀刻从三元碳化物 (Ti 3 AlC 2 ) 合成 Ti 3 C 2 ,而三元碳化物属于 MAX 相大家族 [2],因此自发现第一个 MXene 以来,很明显有更多的 2D 组合物是可能的。不久之后,又报道了具有不同过渡金属和固溶体的更多 MXene [3],从而确立了 MXene 作为一类 2D 材料的地位,化学式为 M n+1 X n T x。迄今为止,M 代表第 3 至 6 族过渡金属,X 为碳或氮,T 代表表面终端,包括元素周期表第 16 和 17 族以及羟基和酰亚胺基(图 1)。随着最近发现碳化物 MXenes 中的氧取代 [ 4 ] 和氧化物碳化物的形成,X 也可以包括氧(至少在固溶体 MXenes 中)。MXenes 可以具有不同数量的 MXM 层,用 n 表示,范围从 1 到 4,T x 中的 x ≤ 2 [5]。自 2019 年我们的 ACS Nano 社论 [ 6 ] 以来,MXenes 的格局从组成和应用的角度发生了变化。MXene 成分的范围在 MXene 公式的所有四个组分中都有所扩展,即 M、X、T 和 M n +1 X n T x 中的 n。对于M,M的全范围固溶体,例如(Ti,V) 2 CT x 、(Ti,Nb) 2 CT x 、(V,Nb) 2 CT x ,允许
镍基高温合金一直在满足燃气轮机对高温材料的需求,以提高工作温度 (T) 并实现更高的效率 [1]。然而,要进一步突破燃气轮机在 T > 1600 C 下的运行极限,就需要发现和开发除相当昂贵的镍基高温合金之外的新型合金。最近对合金探索的兴趣促使人们偏离传统的合金化策略,探索相图中心,从而产生了一种新的合金,即多主元合金 (MPEA) [2]。与沉淀强化合金相比,MPEA 具有单相/双相固溶体(由多种组成元素的比例相当导致的相对“更高”的混合熵驱动),这些固溶体在较高温度下稳定,即使在升高的 T 下也能保持优异的机械、腐蚀和热性能 [2e18]。 MPEA 可用的成分范围非常广泛,而且人们对使用计算和机器学习技术加速合金发现的兴趣日益浓厚,这促进了具有目标特性的 MPEA 的高通量设计研究[8、9、11、12、15、17、19 e 22]。尽管如此,在实验室规模上对这些成分的预测相 / 特性的验证通常仅限于电弧熔炼 [23、24]、机械合金化、放电等离子烧结 [25] 和薄膜沉积 [26]。基于激光沉积的增材制造 (AM) 技术的进步为高通量合成 MPEA 提供了机会,它提高了可扩展性,可以将合金和组件设计结合起来,以获得应用驱动的材料特性 [27 e 36]。然而,AM 的优势有时会被制造方面的挑战所取代,包括材料中的孔隙率
描述和应用 AI-1721 是一种 MIG 焊丝,设计用于堆焊在高温下受到单一或组合金属对金属磨损影响的部件,这些部件在高温下会反复受到热循环、摩擦、磨损、高冲击、氧化和腐蚀,最高温度可达 1150°C。沉积物具有可加工的额外优势。奥氏体型固溶体,沉淀有细分散的 Cr + Mo 碳化物。应用包括:热剪切刀片、锻造底模、切割盘、热加工工具、耐磨垫、蒸汽阀、阀座和主轴、锭块和钢坯支架。
摘要 众所周知,晶粒细化剂可以调整微观结构并提高增材制造 (AM) 钛合金的机械性能。然而,Ni 添加对 AM 制造的 Ti-6Al-4V 合金的内在机制尚不十分清楚。这限制了它的工业应用。本研究系统地研究了 Ni 添加剂对激光辅助增材制造 (LAAM) 制造的 Ti-6Al-4V 合金的影响。结果表明,Ni 添加对 LAAM 制造的 Ti-6Al-4V 合金的微观结构演变产生三个关键影响。(a) Ni 添加剂显着细化了前 β 晶粒,这是由于凝固范围扩大所致。随着 Ni 添加量从 0 增加到 2.5 wt。%,原β晶粒的长轴长度和长宽比分别从1500 µ m和7减小到97.7 µ m和1.46。(b) Ni添加剂可以明显诱导球状α相的形成,这归因于β相和α相之间增强的浓度梯度。根据终止传质理论,这是球化驱动力。随着Ni添加量从0增加到2.5 wt,α板条的长宽比从4.14降低到2.79。%(c) Ni是一种众所周知的β稳定剂,它可以显著增加β相的体积分数。室温拉伸结果表明,随着 Ni 含量的增加,机械强度增加,伸长率几乎呈线性下降。使用改进的数学模型定量分析了强化机制。从结果可以看出,α 板条相和固溶体对本研究中 LAAM 构建的 Ti-6Al-4V-x Ni 合金的总屈服强度贡献最大。此外,随着 Ni 含量的增加,伸长率降低是由于大量固溶体 Ni 原子导致 β 相的变形能力下降。这些发现可以加速增材制造钛合金的开发。