注释歧义由于固有的数据不确定性,例如医学扫描中的界限模糊以及不同的观察者专业知识和偏好已成为训练基于深度学习的医学图像模型的主要观点。为了解决这个问题,普遍的做法是从不同专家那里收集多个注释,导致多评价医学图像分割的设置。现有的作品旨在将不同的注释合并到“地面真实”中,而在众多医疗环境中通常无法实现,或者产生不同的结果,或产生与个人专家评估者相对应的个性化结果。在这里,我们提出了一个更雄心勃勃的多评价医学图像细分的目标,即遵守多元化和个性化结果。指定,我们提出了一个名为d-persona的两个阶段框架(第一个d iversification,然后是角色lization)。在第I阶段,我们利用多个给定注释来训练一个可能性的U-NET模型,并具有约束损失,以证明预测多样性。以这种方式,在第I阶段建造了一个共同的空间,其中不同的潜在代码表示多样化的专家意见。然后,在第二阶段,我们设计了多个基于注意力的投影头,以适应来自共享潜在空间的相应专家提示,然后执行个性化的医疗图像细分。我们评估了内部鼻咽癌数据集和公共肺结核数据集(即LIDC-IDRI)的拟议模型。我们的代码将在https://github.com/ycwu1997/d-persona上发布。的实验实验表明,我们的D-Persona可以同时获得多元化和个性化的结果,从而实现了多评位者医疗图像细分的新SOTA性能。
我们对射击噪声损坏的图像和删除噪声的镜头提出了新的视角。通过将图像形成视为光子在检测器网格上的顺序积累,我们表明,经过训练的网络可以预测下一个光子可能到达的位置,实际上可以解决最小均方形误差(MMSE)denoising任务。这种新观点使我们能够做出三个贡献:i。我们提出了一种新的策略,用于自我监督的denoisis,ii。我们提出了一种通过迭代采样并将少量光子添加到图像中的溶液后部采样的新方法。iii。我们通过从空画布启动此过程来得出一个完整的生成模型。我们称这种方法的生成积累(GAP)。我们在4个新的荧光显微镜数据集上进行定量和定性评估我们的方法,该数据将可供社区提供。我们发现它的表现优于其基准或在PAR上执行。
使用扩散模型进行图像修复通常使用预条件模型(即针对绘画任务进行微调的图像条件模型)或后条件模型(即在推理时重新用于绘画任务的非条件模型)。预条件模型在推理时很快,但训练成本极高。后条件模型不需要任何训练,但在推理过程中很慢,需要多次前向和后向传递才能收敛到理想的解决方案。在这里,我们推导出一种不需要昂贵训练但推理速度很快的方法。为了解决昂贵的推理计算时间,我们在潜在空间而不是图像空间上执行前向-后向融合步骤。这是通过扩散过程中新提出的传播模块解决的。在多个领域进行的实验表明,我们的方法达到或改善了状态
文本对图像(T2I)生成模型最近成为一种强大的工具,可以创建照片现实的图像并引起多种应用。然而,将T2i模型的有效整合到基本图像分类任务中仍然是一个悬而未决的问题。促进图像锁骨表现的一种普遍的策略是通过使用T2I模型生成的合成图像来增强训练集。在这项研究中,我们仔细检查了当前发电和常规数据增强技术的缺点。我们的分析表明,这些方法努力产生既忠实的(就前景对象)而且针对领域概念的多样化(在背景上下文中)。为了应对这一挑战,我们引入了一种创新的类数据增强方法,称为diff-mix 1,该方法通过在类之间执行图像翻译来丰富数据集。我们的经验结果是,DIFF-MIX在信仰和多样性之间取得了更好的平衡,从而导致各种图像分类场景之间的性能显着提高,包括域名数据集的少量,常规和长尾分类。
课程:ENGG5104课程ID:011157 AFF日期:2024-07-01 CRSE状态:主动批准。状态:批准的[新课程]图像处理和计算机视觉图像处理及计算机视觉本课程将涵盖图像处理和计算机视觉中的基本知识和高级主题,包括特征检测,细分,运动估算,全景构建,3D重建,场景检测和分类,颜色图像处理和恢复。还将引入计算机图形中的应用程序,包括图像转换和摄像机校准。将讨论相关算法和数学背景的基本概念。
2011 年 12 月 3 日 — 国防网络犯罪中心、美国国税局……在数字数据采集工具断言和测试计划版本 1.0 中测试案例。
摘要。事件摄像机作为具有较高dynamic范围的生物启发的视觉传感器,能够解决局部过度繁殖或不受欢迎的问题,即在具有高动态范围或波动的光照条件下,常规的基于框架的摄像机会遇到的常规基于框架的摄像机。由于两种相机之间的模态差距,简单的融合是不可行的。此外,由摄像机位置和框架速率偏差引起的幽灵伪影也会影响最终融合图像的质量。为了解决问题,本文提出了一个联合框架,将当地暴露的帧与事件摄像机捕获的事件流相结合,以在高动态范围场景中以偏斜的纹理增强图像。具体来说,使用轻量级的多尺度接收场块用于从事件流到帧的快速模态转换。此外,还提出了一个双分支融合模块来对齐特征并删除幽灵伪像。实验结果表明,所提出的方法有效地减轻了一系列极端照明条件的图像高度明亮和黑暗区域的信息丢失,从而产生了逼真的和自然的图像。
通过利用量化误差和加性噪声之间的相似性,可以通过使用扩散模型“ denoise”量化引入的伪影来构建基于扩散的图像压缩编解码器。但是,我们确定了这种方法中的三个差距,从而导致量化的数据排除在扩散模型的分布之外:噪声水平,噪声类型和由离散化引起的差距的差距。为了解决这些问题,我们提出了一个新型的基于量化的正向扩散过程,该过程是理论上建立的,并桥接了上述三个差距。这是通过经过精心量身定制的量化时间表以及对均匀噪声训练的扩散模型来实现的。与以前的工作相比,我们提出的架构也会产生一贯的现实和详细的结果,即使是在极低的比特率下,同时保持对原始图像的忠诚度。
我们介绍C ONTITION- WARE神经N ETWORK(CAN),这是一种将控制添加到图像生成模式中的新方法。与先前的条件控制方法并行,可以通过动态降低神经网络的重量来控制图像生成过程。这是通过引入条件感知的重量产生模式来实现的,该模块会根据输入条件为卷积/线性层生成条件重量。我们测试可以在Coco上的ImageNet和文本对图像生成上生成类别图像的生成。可以始终如一地为包括DIT和UVIT在内的扩散变压器模型提供显着改进。特别是,Ca n与有效的T(CAT)结合在Imagenet 512×512上达到2.78 FID,超过DIT-XL/2,同时每个采样步骤需要少52×MAC。
文本引导的图像编辑可以在支持创意应用程序方面具有变革性的影响。关键挑战是生成忠于输入文本提示的编辑,同时与输入图像一致。我们提出了Imagen Edor,这是一种构建的级联扩散模型,通过对文本引导的图像插入的微调[36]构建。Imagen ed- Itor的编辑忠实于文本提示,这是通过使用对象探测器在培训期间提出涂料面罩来提出的。此外,成像编辑器在输入图像中通过对原始高分辨率图像进行调节管道来详细信息。为了证明定性和定量评估,我们介绍了EditBench,这是用于文本指导图像插入的系统基准。EditBench评估在Natu-ral和生成的图像上探索对象,属性和场景的图像。Through extensive human evaluation on EditBench, we find that object-masking during training leads to across- the-board improvements in text-image alignment – such that Imagen Editor is preferred over DALL-E 2 [ 31 ] and Stable Diffusion [ 33 ] – and, as a cohort, these models are better at object-rendering than text-rendering, and handle mate- rial/color/size attributes better than count/shape attributes.