图像重建是一个基于采样传感器测量的计算图像的反问题。稀疏采样的图像重建构成了由于测量有限而引起的挑战。在这项工作中,我们提出了一种隐含的神经表示学习方法,并具有先验嵌入(NERP),以从稀疏采样测量值中重建计算图像。该方法与以前的基于深度学习的图像重建方法从根本上有所不同,因为NERP利用了图像先验中的内部信息,以及稀疏采样测量的物理学来产生未知主题的表示。除了先前的图像和稀疏采样测量值外,训练NERP无需大规模数据。此外,我们证明了NERP是一种通用的方法,它概括为不同的成像方式,例如CT和MRI。我们还表明,NERP可以坚固地捕获评估肿瘤进展所需的微妙而显着的图像变化。
摘要:了解大脑感知外界输入数据的功能是神经科学的一大目标。神经解码有助于我们模拟大脑活动和视觉刺激之间的联系。通过这种建模可以实现从大脑活动重建图像。最近的研究表明,视觉显著性是图像刺激的重要组成部分,它给大脑活动留下了深刻的印象。本文提出了一个深度模型,通过视觉显著性从脑电图 (EEG) 记录中重建图像刺激。为此,我们训练了基于几何深度网络的生成对抗网络 (GDN-GAN),将 EEG 信号映射到每个图像对应的视觉显著性图。所提出的 GDN-GAN 的第一部分由切比雪夫图卷积层组成。所提出的网络的 GDN 部分的输入是基于功能连接的 EEG 通道图形表示。 GDN 的输出被施加到所提出的网络的 GAN 部分以重建图像显著性。所提出的 GDN-GAN 使用 Google Colaboratory Pro 平台进行训练。显著性指标验证了所提出的显著性重建网络的可行性和效率。训练后的网络的权重用作初始权重来重建灰度图像刺激。所提出的网络实现了从 EEG 信号进行图像重建。
开发新的运动补偿 T1 映射方法,该方法使用 MR 信号行为模型进行图像重建,以在尽可能短的采集时间内实现准确的 T1 量化
开发新的运动补偿 T1 映射方法,该方法使用 MR 信号行为模型进行图像重建,以在尽可能短的采集时间内实现准确的 T1 量化
开发新的运动补偿 T1 映射方法,该方法使用 MR 信号行为模型进行图像重建,以在尽可能短的采集时间内实现准确的 T1 量化
尽管现有的fMRI到图像重建方法可以预测高质量的图像,但它们并未明确考虑训练和测试数据之间的语义差距,从而导致具有不稳定和不确定语义的重建。本文通过明确减轻语义差距来解决广义fMRI到图像重建的问题。具体来说,我们利用预先训练的剪辑模型将训练数据映射到紧凑的特征表示形式,该图表将训练数据的稀疏语义扩展到密集数据,从而避免了附近已知概念的实例(即训练超级杆)的语义差距。受FMRI数据中强大的低级表示的启发,这可以帮助减轻远离已知概念(即在培训超级阶级之外)的情况的语义差距,我们利用结构信息作为一般提示来指导图像重建。此外,我们基于概率密度估计来提出语义不确定性,并通过在扩散过程中自适应地整合e xpanded s emantics和s弹性信息(GESS),从而实现了g耗电fMRI到图像的重建。实验结果表明,所提出的GESS模型优于最先进的方法,我们提出了一种广义的场景拆分策略,以评估GESS在缩小语义差距方面的优势。我们的代码可在https://github.com/duolala1/gess上找到。
8位受访者指出的最常见的技术进步是数字PET-CT。调查受访者评论说,数字PET-CT可以提高灵敏度并提高图像质量,从而提高病变可检测性和诊断信心。调查受访者指出的图像质量的具体改进 - 无论是数字PET-CT的一部分,还是作为硬件,软件和采集方法的一般进步 - 包括改进的飞行时间计算,更长的轴向视野系统,改进的图像重建功能,图像重建功能,空间分辨率的精确性精度和更敏感的运动校正疗程。注意到,在扫描或后处理过程中,提高了图像质量,可以提高诊断病理的能力,并促进较短的扫描时间与较旧的PET-CT设备相比产生可比或更高质量的图像。
Vision Transformer 在包含数百万张图像的数据集上进行训练或预训练后,可以为图像分类任务提供出色的准确率,并且与卷积神经网络相比可以节省计算资源。受潜在准确率提升和计算资源节省的驱动,我们研究了用于加速磁共振图像重建的 Vision Transformer。我们表明,当在 fastMRI 数据集(一种仅包含数千张图像的流行加速 MRI 数据集)上进行训练时,针对图像重建量身定制的 Vision Transformer 可实现与 U-net 相当的重建准确率,同时享受更高的吞吐量和更少的内存消耗。此外,由于众所周知 Transformer 在进行大规模预训练时表现最佳,但 MRI 数据的获取成本高昂,我们提出了一种简单而有效的预训练方法,它完全依赖于大型自然图像数据集,例如 ImageNet。我们表明,对 Vision Transformer 进行预训练可显著提高加速 MRI 的训练数据效率,并增强对解剖结构变化的鲁棒性。在仅有 100 张 MRI 训练图像可用的条件下,预训练的 Vision Transformer 实现的图像质量明显优于预训练的卷积网络和当前最先进的技术。我们的代码可在 https://github.com/MLI-lab/transformers_for_imaging 上找到。关键词:加速 MRI、Transformer、预训练、图像重建