结直肠癌(CRC)是最常见的恶性肿瘤之一,对人类健康构成了严重威胁。结直肠癌类器官是通过从患者中提取肿瘤细胞并结合三维培养技术来建立实验室的微型肿瘤模型。与传统的二维培养系统相比,大肠癌器官可以保留原发性肿瘤的分子特征和细胞组成,并模拟培养环境中实际肿瘤的生物学特征和组织结构。因此,类器官已成为癌症生物学,药物筛查和个性化治疗领域的重要研究工具,并显示了广泛的应用前景。本文回顾了结直肠癌类器官的研究进展,详细讨论了器官的培养条件,并总结了其在结直肠癌建模,CRC Organoid Biobank构造,药物筛查,毒性评估和个性化治疗中的应用。进步。通过这些内容,本文旨在为结直肠癌器官技术在基础研究和临床治疗中的进一步应用提供有用的参考和参考。
张鑫. 智能时代的脑科学与类脑智能. 中国科学院院刊, 2024, 39(5): 840-850, doi: 10.16418/j.issn.1000-3045.20240305003.
1美国杜克大学医学院,美国北卡罗来纳州达勒姆大学医学院,美国2杜克大学血液学典型科学系高维细胞多摩学数据对于理解生物控制的各个层次至关重要。单一的'Omic方法提供了重要的见解,但在处理基因,蛋白质,代谢产物以及其他方面的复杂关系方面常常缺乏。在这里,我们提出了一种称为Gaudi的新颖,非线性和无监督的方法(通过UMAP数据集成进行组聚集),该方法利用独立的UMAP嵌入来进行多种数据类型的并发分析。Gaudi比几种最先进的方法更好地发现不同的OMIC数据之间的非线性关系。这种方法不仅通过它们的多摩尼克曲线群簇样本,而且还识别了每个OMICS数据集的潜在因素,从而促进对每个群集有助于的基本特征的解释。因此,Gaudi促进了更直观,可解释的可视化,从而从广泛的实验设计中识别出新颖的见解和潜在的生物标志物。引言多摩变分析整合了各种数据类型,例如基因组学,蛋白质组学和代谢组学。组合多种OMICS模式比单独分析每种数据类型时,有可能发现新颖的见解和生物标志物(1,2)。高通量技术的增长促使OMICS数据呈指数增加,这突显了对新的集成方法的迫切需求。传统的多摩学集成方法主要集中在降低尺寸技术上。例如,在RGCCA(3)中使用了基于规范相关分析(CCA)的方法,而MCIA中使用了共惯性分析(4)。同样,贝叶斯因子分析基于MOFA+(5)等方法,负基质分解对于Intnmf(6),主成分分析(7)和独立组件分析是TICA(8)的基础。尽管这些方法已在各种OMICS数据集和生物环境中应用,但它们的有效性和局限性各不相同,强调了在其应用中需要仔细考虑的需求(9)。这些方法共享的中心限制是它们对线性假设的依赖。虽然在某些情况下合适,但这种假设可能不足以准确捕获复合物,通常是非线性的相互作用(10,11)。此外,它们的计算强度构成了挑战,尤其是对于大型数据集。应对这些挑战,最近的进步已转向非线性整合方法(9,10)。均匀的歧管近似和投影(UMAP)是一种降低技术,可以揭示复杂数据集中的基础结构(12)。通过将流形学习与拓扑数据分析相结合,它可以有效地可视化较低空间中的高维数据。UMAP通过有效地从PCA和T-SNE等其他方法中脱颖而出
识别高能粒子碰撞中形成的喷流需要解决可能大量终态粒子的优化问题。在这项工作中,我们考虑使用量子计算机加速喷流聚类算法的可能性。专注于电子-正电子碰撞的情况,我们考虑一种众所周知的事件形状,称为推力,其最优值对应于一组粒子中最像喷流的分离平面,从而定义两个半球喷流。我们展示了如何将推力公式化为量子退火问题和 Grover 搜索问题。我们分析的一个关键部分是考虑将经典数据与量子算法接口的现实模型。通过顺序计算模型,我们展示了如何将众所周知的 O × N 3 Þ 经典算法加速为 O × N 2 Þ 量子算法,包括从 N 个终态粒子加载经典数据的 O × N Þ 开销。在此过程中,我们还找到了一种将经典算法加速到 O = N 2 log N Þ 的方法,该方法使用受 SISC 单喷射算法启发的排序策略,该算法没有自然的量子对应物。借助并行计算模型,我们在经典和量子情况下都实现了 O = N log N Þ 的缩放。最后,我们考虑将这些量子方法推广到与大型强子对撞机质子-质子碰撞中使用的算法更密切相关的其他喷射算法。
图形神经网络(GNNS)已在许多图分析任务(例如节点分类和链接预测)上实现了最新结果。然而,图形群集等图形上的重要无监督问题已证明对GNN的进步具有更大的抵抗力。图形聚类的总体目标与GNN中的节点合并相同 - 这意味着GNN池方法在聚类图方面做得很好?令人惊讶的是,答案是否 - 在简单的基准(例如应用于学习的表示上的K均值)良好工作的情况下,循环的GNN合并方法通常无法恢复群集结构。我们通过仔细设计一组实验来进一步研究,以研究图形结构和属性数据中不同的信噪情景。为了解决这些方法在聚类中的性能不佳,我们引入了深层模块化网络(DMON),这是一种受群集质量模块化量度启发的无监督的汇总方法,并显示了它如何处理现实世界图的挑战性聚类结构的恢复。同样,在现实世界数据上,我们表明DMON产生的高质量群集与地面真相标签密切相关,从而获得了最先进的结果,比各个不同指标的其他合并方法提高了40%以上。关键字:图形聚类,图形神经网络,随机块模型
聚类是算法中的一个重要主题,在机器学习、计算机视觉、统计学和其他几个研究学科中有着广泛的应用。图聚类的传统目标是找到具有低电导性的聚类。这些目标不仅适用于无向图,而且无法考虑聚类之间的关系,而这对于许多应用来说可能是至关重要的。为了克服这些缺点,我们研究了有向图(有向图),其聚类彼此之间展示了更多的“结构”信息。基于有向图的 Hermitian 矩阵表示,我们提出了一种近线性时间的有向图聚类算法,并进一步表明我们提出的算法可以在合理的假设下以亚线性时间实现。我们的理论工作的意义通过对联合国商品贸易统计数据集的大量实验结果得到证明:我们算法的输出聚类不仅展示了聚类(国家集合)在进出口记录方面如何相互关联,还展示了这些聚类如何随着时间的推移而演变,这与已知的国际贸易事实一致。
识别高能粒子碰撞中形成的喷流需要解决可能大量终态粒子的优化问题。在这项工作中,我们考虑使用量子计算机加速喷流聚类算法的可能性。专注于电子-正电子碰撞的情况,我们考虑一种众所周知的事件形状,称为推力,其最优值对应于一组粒子中最像喷流的分离平面,从而定义两个半球喷流。我们展示了如何将推力公式化为量子退火问题和 Grover 搜索问题。我们分析的一个关键部分是考虑将经典数据与量子算法接口的现实模型。通过顺序计算模型,我们展示了如何将众所周知的 O × N 3 Þ 经典算法加速为 O × N 2 Þ 量子算法,包括从 N 个终态粒子加载经典数据的 O × N Þ 开销。在此过程中,我们还找到了一种将经典算法加速到 O = N 2 log N Þ 的方法,该方法使用受 SISC 单喷射算法启发的排序策略,该算法没有自然的量子对应物。借助并行计算模型,我们在经典和量子情况下都实现了 O = N log N Þ 的缩放。最后,我们考虑将这些量子方法推广到与大型强子对撞机质子-质子碰撞中使用的算法更密切相关的其他喷射算法。
摘要。由于存在提供原始特性的阳离子簇,因此在随机网络模型中无法在随机网络模型中描述阳离子的结构行为。甚至观察到可能以百分比浓度出现的阳离子观察到这些凝结过程,这使其更加壮观。尤其是,在(铝制)硅酸盐玻璃中ZR 4 + - 和Fe 2 + /Fe 3 +的结构和化学特性说明了阳离子周围的短距离顺序与纳米级异质性的形成之间的联系。这些Zr-或Fe富集的簇的结构特性相似,因为两者都是基于边缘共享阳离子多面体。阳离子也可能在网络形成位置中发生。在这种情况下,阳离子位点与硅酸盐网络连接。在这种定位中,保林规则和局部费用余额要求将有利于阳离子在纳米级稀释。对于前者而言,这两种类型的局部结构的拓扑约束比后者更强,因为与拐角共享的polyhedra相比,疾病的e ff ects较小。这可以解释这种有序异质性的生长过程中的晶体成核,从而产生了原始特性,这些特性在大量玻璃材料中所示,其中包含高科技玻璃陶瓷和火山眼镜。
维持中枢神经系统的体内平衡。近年来,沿着血管周围空间(DTI-ALP)的扩散张量图像分析已成为一种有价值的非侵入性想象技术,用于评估各种神经系统疾病中的GS功能。从DTI-ALP中得出的Alps索引可以捕获与这些疾病相关的动态变化。本文回顾了GS的结构和功能,DTI-ALP的原理和好处及其在神经疾病中的应用,旨在提供监测疾病进展,评估治疗效率并预测神经疾病的预后的参考。