部署阶段完成后,ION 将开始在轨测试第三方有效载荷,包括 D-Orbit 云平台的第二阶段测试,该平台旨在提供太空中的分布式高性能数据分析计算和存储功能。对于这次任务,D-Orbit 正在与 Unibap 和欧洲航天局 (ESA) 合作,他们正在支持研究机构 VTT 开发的高光谱电光仪器的在轨测试。该平台允许第三方上传和执行云应用程序和 AI 工作负载,以便在图像创建后立即进行处理,从而能够在创纪录的时间内将结果发送给用户。第一次测试活动是在 ION 的上一次任务期间进行的,成功执行了来自各个合作伙伴的 23 个独立的 SpaceCloud 兼容应用程序。
部署阶段完成后,ION 将开始在轨测试第三方有效载荷,包括 D-Orbit 云平台的第二阶段测试,该平台旨在提供太空中的分布式高性能数据分析计算和存储功能。对于这次任务,D-Orbit 正在与 Unibap 和欧洲航天局 (ESA) 合作,他们正在支持研究机构 VTT 开发的高光谱电光仪器的在轨测试。该平台允许第三方上传和执行云应用程序和 AI 工作负载,以便在图像创建后立即进行处理,从而能够在创纪录的时间内将结果发送给用户。第一次测试活动是在 ION 的上一次任务期间进行的,成功执行了来自各个合作伙伴的 23 个独立的 SpaceCloud 兼容应用程序。
在真实条件下进行测试是验证概念、创新技术和性能并加速其进入市场的真正训练场。然而,在轨测试是一项昂贵而复杂的工作,导致许多创新公司陷入臭名昭著的“死亡之谷”。因此,定期且负担得起的飞行机会来验证太空技术对于确保欧盟太空技术的国际竞争力和创新至关重要。这就是为什么欧盟委员会在“地平线”计划(欧盟研究与创新框架计划)下推出了 IOD/IOV 计划,以在欧盟提供经常性、可访问和可持续的 IOD/IOV 服务。这将加速创新并促进欧盟太空技术的商业化,增强欧盟航天工业的全球竞争力。
摘要:电推进系统 NanoFEEP 在 UWE-4 卫星上进行了集成和在轨测试,这标志着首次成功演示了 1U CubeSat 上的电推进系统。介绍了推进剂加热过程和不同推力水平下推进系统功耗的在轨特性测量。此外,还描述了基于推力矢量方向对航天器姿态影响的分析。所用的加热器每轨道液化推进剂 30 分钟,功耗为 103 ± 4 mW。在此期间,可以启动相应的推进器。推进系统包括一个推进器头、其相应的加热器、中和器和电源处理单元的数字组件,功耗为 8.5 ± 0.1 mW · µ A − 1 + 184 ± 8.5 mW,并与发射极电流成比例。两个推进器头的推力方向估计与立方体卫星结构中的安装方向成 15.7 ± 7.6 ◦ 和 13.2 ± 5.5 ◦ 角。鉴于 1U 立方体卫星的功率非常有限,NanoFEEP 推进系统是一个非常可行的选择。后续 NanoFEEP 推进器的加热器已经得到改进,因此系统可以在整个轨道周期内启动。
随着立方体卫星技术在轨测试和实施的日益增多,对高效、低质量推进系统的需求也不断增长。离子推进系统已成为填补立方体卫星推进空白的潜在技术。BeaverCube 是麻省理工学院学生建造的 3U 立方体卫星,将在低地球轨道上进行离子推进系统演示。BeaverCube 计划于 2020 年 10 月之前发射,旨在展示 Accion Systems Inc. 的平铺离子液体电喷雾推进系统。该系统利用离子液体作为推进剂,使 BeaverCube 能够进行高效、低推力机动。成功的系统演示将能够使用 BeaverCube 上的 NovAtel OEM-719 全球定位系统接收器检测平移机动。可探测性要求机动的高度变化至少为 9 米,这比预期的 GPS 高度误差高出 3 个标准差。这项工作的目标是确定平移机动的持续时间,从而产生最高的探测概率,同时产生最小的推力计算误差。根据 Systems Tool Kit 中执行的模拟,确定 3.5 小时的机动是最佳的,导致高度变化为 280.6 米。
EAGLE-1 任务旨在开发欧洲首个自主的端到端太空量子密钥分发 (QKD) 系统。该任务由欧洲航天局 (ESA) 和 SES 牵头,并与多个欧洲国家航天局和私人合作伙伴合作。最先进的 QKD 系统将包括 EAGLE-1 低地球轨道 (LEO) 卫星上的有效载荷、光学地面站、量子操作网络和密钥管理系统。EAGLE-1 项目代表了下一代量子通信基础设施的重要一步,它提供了宝贵的技术成果和任务数据,并为 EuroQCI 计划的发展做出了贡献。德国航空航天中心 (DLR) 的通信和导航研究所 (IKN) 是 EAGLE-1 任务的重要合作伙伴,参与了太空和地面部分元件的研究和开发。这里我们报告了 QKD 发射器(QKD 有效载荷的重要组成部分)的开发,以及光学地面站 Oberpfaffenhofen (OGS-OP) 的定制,以进行 EAGLE-1 的 IOT 阶段。对于空间部分,DLR-IKN 负责 QKD 发射器的设计,包括软件和固件的开发。该发射器生成量子态,用于实现基于光信号的 QKD 协议,该协议将传输到地面。对于地面部分,OGS-OP 将作为 EAGLE-1 的在轨测试地面站。凭借对一系列量子通信卫星的专业知识以及新实现,OGS-OP 将首次验证有效载荷、光链路和 QKD 系统的性能。我们介绍了 OGS-OP 为该任务所做的主要开发,其中包括实施升级的自适应光学系统以校正大气畸变并优化入射光与单模光纤的耦合。
为什么要将国际空间站用作实验室? 7 从国际空间站植物研究中得到的经验教训 9 深入了解植物的基本生物处理器 9 重力与其他空间环境刺激之间的相互作用 9 多组学方法为植物如何适应太空飞行提供线索 11 植物对太空飞行的细胞反应 12 太空中作物生产的物理和生物制约因素 13 国际空间站的大气条件可能会影响作物生长 13 微重力下对流减少对水供应、养分输送和气体交换带来挑战 15 空间作物生产室的光照要求 16 植物微生物:在未来空间作物生产系统中分辨敌友 18 国际空间站上的研究设施和设备及其选择方法 19 太空探索中使用的植物生长系统的设计注意事项 19 植物生长设施 19 罐内生物研究 (BRIC) 20 BRIC 培养皿固定装置(BRIC/PDFU)和 BRIC-LED 20 肯尼迪固定管(KFT) 20 植物实验单元/细胞生物学实验设施(PEU/CBEF) 21 蔬菜生产系统(Veggie) 22 Spectrum(多光谱荧光成像仪) 23 高级植物栖息地 24 多用途可变 G 平台(MVP) 25 用于国际空间站实验的立方体有效载荷 25 XROOTS(eXposed Root 在轨测试系统)-正在开发中 26 被动轨道营养输送系统(PONDS)-正在开发中) 26 国际空间站上的支持设施 27 为国际空间站提供资金、开发和启动研究 28 寻找赞助商 28 国际空间站美国国家实验室 28 其他政府机构 29 国际空间站商业机会 30 与 NASA 合作 31 参考文献 32
600 个源。值得注意的是,实验室利用新的 380-B 型 B 容器完成了首次源回收,采用了纠正行动计划中修订的要求。Triad 在与国际合作伙伴的核安全能力建设中提供了出色的支持,为双边活动的材料控制和核算 (NMAC) 提供了主题专家 (SME) 支持。Triad 在支持太空核爆炸探测任务方面表现出色。实验室在将操作实验有效载荷安装到国防部卫星的后期组装、集成和测试过程中提供了技术输入和简报。这导致了一项努力来发布关键的空间环境数据,并继续制造下一代有效载荷,以支持 6 月发射和在 USSF GPS 卫星上对 GBD 有效载荷进行早期在轨测试。此外,实验室在 NNSS 执行了 AJAX 实验活动,在 Sigma Complex 执行了监测活动,以支持 DNN 研发工作,以评估检测和表征材料处理和生产操作的能力。 Triad 通过一系列现场测试和高保真模拟证明低当量核监测 PE1 高爆炸源的设计将满足所有科学目标,成功完成了对低当量核监测 PE1 高爆炸源的最终审查。Triad 在国家和国际保障参与层面提供了高质量的创新保障政策研究。Triad 还通过对核、化学/生物和导弹领域的拦截案例进行高质量的技术审查提供了出色的支持。Triad 为各种计划提供了关键支持,包括评估燃耗、裸临界质量、剂量以及评估食品和水污染的方法。Triad 为美国高性能研究反应堆 (USHPRR) 项目提供技术支持,以开发用于制造高密度铀钼整体式低浓缩铀 (LEU) 燃料的商业规模制造工艺。此外,Triad 还为移动包装计划提供了出色的技术专业知识,帮助其准备和执行多项演习。实验室积极支持 NNSA 的技术执行合作伙伴,开发加速器和中子俘获新技术,有效推进了钼-99 工作。Triad 继续为坑道拆卸和替代方案处理分析 (AoA) 规划提供技术支持,并为实现关键决策 (CD)-1 的计划制定假设。提供了重要的技术分析,以支持具有挑战性的交换进料材料的氧化物生产,为过渡到使用 SAVY 容器进行包装做准备。这将扩大 NDA 表在产品 MC&A 测量中的使用范围。Triad 继续进行开创性的实验工作,以及响应迅速的增值技术分析,为反恐和反扩散政策提供信息,并将新元素和工具整合到更大的核事故响应任务中。Triad 利用 pRad 诊断进行了一系列实验,并支持了 NNSS 的计划综合实验。Triad 支持跨机构合作伙伴的威胁科学培训和评估,并在培训课程开发过程中提供主题专业知识。这包括为来自核搜索计划和后果管理计划的 RAP 团队人员提供虚拟光谱警报裁决课程 (SAAC)。此外,这包括培训