a.本咨询通告 (AC) 描述了一种获得 FAA 适航批准的可接受方法,用于安装已根据技术标准命令 (TSO)-C151a、地形感知和警告系统或后续修订版批准的地形感知和警告系统 (TAWS)。FAA 的 TSO 流程是获得 FAA 设备、系统或产品设计和性能批准的一种方式;但是,TSO 不提供安装批准。本 AC 旨在为符合 TSO-C151a 的 TAWS 设计可接受安装提供指导。所提供的指导专门针对在根据 14 CFR 第 25 部分 [通常称为联邦航空条例 (FAR) 第 25 部分] 认证的运输类飞机上安装这些系统。它描述了此类装置的适航考虑因素,因为它们适用于 TAWS 的独特功能以及 TAWS 与飞机上其他系统的接口。
缺乏全面的块状硫化物潜力图是阻碍 Escambray 地形中块状硫化物勘探和采矿投资和开发的主要因素。为了解决这个问题,新技术和方法被应用于完整的地理勘探数据集,以预测研究区域的潜力。矿床识别标准是基于研究区域和其他地区块状硫化物矿床特征从地理数据集中提取空间证据的基础。使用 Crósta 技术、软件脱叶剂技术和矿物成像技术来检测 Escambray 地形中的褐铁矿和粘土蚀变带。使用面积关联系数对这些技术的结果进行比较,表明矿物成像技术是检测与植被茂盛的地形中的块状硫化物矿床相关的粘土蚀变带的最佳方法。应用河流沉积物样品的主成分分析绘制地球化学异常区。研究了磁场分析信号和第一垂直梯度,以绘制现有地质图中缺少的结构和岩性特征。航空磁数据被证明分别可用于检测镁铁质/超镁铁质和断层/线性构造。为了量化地质特征与块状硫化物矿床之间的空间关联,使用了证据权重法。它产生了具有统计意义的结果,并表明几个地质特征(例如地球化学证据、与断层/裂缝的接近度、与超镁铁质/镁铁质岩的接近度、热液蚀变带和围岩)在空间上与块状硫化物矿床相关。证据权重建模也被证明对该地区进行预测建模是有效的。由此产生的预测图表明,埃斯坎布雷地形约 28% 具有形成块状硫化物矿床的潜力。预测图的预测率至少为 71%。预测图可用于指导该地区的进一步勘探工作。
摘要:土壤有机碳(SOC)在全球碳循环和隔离中起着至关重要的作用,这是对其分布和控制的全面理解的基础。这项研究探讨了各种协变量对使用深度学习方法在本地(高达1.25 km)和大陆(美国)量表的SOC空间分布的重要性。我们的发现突出了地形属性在预测地形浓度分布中的重要作用,在局部规模上贡献了大约三分之一的总体预测。在大陆尺度上,气候在预测SOC分布中的重要性仅比地形高1.2倍,而在当地规模上,地形的结构模式分别比气候和植被的重要性分别高14和2倍。我们强调了地形属性,同时在各个尺度上都是SOC分布不可或缺的一部分,在本地规模上具有更强的预测指标,并具有明确的空间布置信息。尽管这项观察性研究没有评估因果机制,但我们的分析仍然提出了有关SOC空间分布的细微观点,这表明在局部和大陆尺度上,SOC的不同预测指标。这项研究所获得的见解对改进的SOC映射,决策支持工具和土地管理策略有影响,这有助于开发有效的碳封存计划并增强气候缓解措施。关键词:土壤有机碳,地形属性,数字土壤图,深度学习,特征重要性分析■简介
文章历史:在过去的十年中,已经开发了各种基于速度障碍的方法,以避免动态环境中的碰撞。但是,这些方法通常仅限于处理几个障碍,连续的相遇或缺乏安全地形的安全保证。本文提出了使用速度障碍法的自适应碰撞避免策略,旨在使自主火星流浪者能够安全地驾驶动态和不确定的地形,同时避免多个障碍。该策略构建了自适应速度锥体,考虑了动态障碍和地形特征,从而确保了连续的安全性,同时将漫游者引导到其航路点。我们在模拟的MARS探索方案中实施了策略,代表了具有挑战性的多OSTACLAS任务。模拟结果表明,我们的方法通过增加安全距离来增强性能,使其非常适合自主行星探索,在这种情况下,避免碰撞对于任务成功至关重要。
抽象的睡眠睡眠对于保持健康的身体和心灵至关重要,因为我们的身体细胞在睡眠期间修复自身。但是,各种因素会干扰我们的睡眠,而地质应力被认为是促成原因之一。地质应力是指自然能量流动的干扰,这主要是由地质水静脉,矿物沉积物和断层线等地质特征引起的,这可能导致健康破坏。因此,我们旨在研究地质应激对睡眠质量的影响以及Enviromat作为潜在解决方案的功效。在这项研究中,根据包含和排除标准,总共筛选了22名受试者和招募。研究始于对相关研究的文献综述,以确定地质压力对睡眠质量的影响。在审查了相关研究后,在新德里全印度医学科学研究所成立了一项方案并提交给机构伦理批准委员会。一旦协议获得批准,就在睡眠实验室中鉴定出地形应力区,那里的受试者在这些区域的床上睡觉。随后,评估了环境的功效,以减轻地形应激对睡眠质量的有害影响。记录了20个受试者的完整数据,并在两次读数之间进行10天的差距进行了和分析。
沿岸陷波 (CTW) 承载着海洋对边界强迫变化的响应,是沿岸海平面和经向翻转环流的重要机制。受西部边界对高纬度和公海变化的响应的启发,我们使用线性正压模型来研究科里奥利参数 (b 效应)、海底地形和海底摩擦的纬度依赖性如何影响西部边界 CTW 和海平面的演变。对于年周期和长周期波,边界响应的特点是改良的架波和一类新的漏坡波,它们沿岸传播,通常比架波慢一个数量级,并向内陆辐射短罗斯贝波。能量不仅沿着斜坡向赤道方向传输,而且还向东传输到内陆,导致能量在当地和近海耗散。 b 效应和摩擦力导致沿赤道方向沿岸衰减的陆架波和斜坡波,从而降低了高纬度变化对低纬度的影响程度,并增加了公海变化对陆架的渗透——较窄的大陆架和较大的摩擦系数会增加这种渗透。该理论与北美东海岸的海平面观测结果进行了比较,定性地再现了沿海海平面相对于公海向南的位移和幅度衰减。这意味着 b 效应、地形和摩擦对于确定沿海海平面变化热点发生的位置非常重要。
酶联交联是一种聚合途径,依赖于酶作为裂解或形成共价键的试剂。酶是高度底物特异性的,具有短反应时间,用于催化交联的同时抑制潜在的毒性侧反应,这使得这些交联方法比其化学对应物更有效(Bae等,2015; Hu等,2019b)。这些反应也具有细胞相容,无创,并通过控制酶浓度来良好地控制水凝胶形成(Sperinde&Griffith,1997)。酶联交联是一种在组织工程和再生医学中使用的水凝胶的有趣方法,因为它可以在温和的生理条件下提供快速的凝胶化(通常不到10分钟),使其适合于体内形成水凝胶在内的生物学应用(Hu等,2019b; Mohammed&Murphy; Mohammed&Murphy,2009; Moreira; Moreira teixeira exeira and exeira。此外,通常可以通过修改温度,pH或离子强度等外部因素来控制酶活性(Claaßen等,2019; Heijnis等,2010)。酶已用于催化反应。使用黄嘌呤氧化酶将黄牛蛋白氧化为白细胞蛋白酶(Kalckar等,1950)。最早描述的酶用于水凝胶交联应用的一种历史可以追溯到1990年代后期,当时Sperinde和Griffith使用经凝集丁胺酶通过交联功能化的多型(乙烯甘氨酸)(PEG)(PEG)(PEG)(PEG)和裂解的polypeptepepte&Grifififififififf和1997的盐酸和盐酸盐(Sperififififififf)来形成水凝胶网络。从那时起,转透明酶一直是组织工程中最广泛使用的酶,以及辣根过氧化物酶(HRP)。以后的酶通过将过氧化氢(H 2 O 2)作为氧化剂催化苯酚或苯胺衍生物的偶联(Ren等,2017)。这种反应可以轻松调整胶凝时间,机械强度,降解动力学和随后水凝胶的多孔结构,通过控制成分的浓度(Bae等,2015; Cheng等,2018)。酶线交联的水凝胶的多功能性和可调性转化为使用
10991719,0,从https://onlinelibrary.wiley.com/doi/10.1002/sd.3136下载,由Cochraneitalia,Wiley Online Library,on [16/09/2024]。有关使用规则,请参见Wiley Online Library上的条款和条件(https://onlinelibrary.wiley.com/terms-and-conditions); OA文章由适用的Creative Commons许可
摘要:机载高光谱成像已被证明是一种有效的手段,可以为生物物理变量的检索提供新的见解。然而,从机载高光谱测量中获得的无偏信息的定量估计主要需要校正双向反射分布函数 (BRDF) 所描绘的陆地表面的各向异性散射特性。迄今为止,角度 BRDF 校正方法很少结合观察照明几何和地形信息来全面理解和量化 BRDF 的影响。森林地区尤其如此,因为这些地区通常地形崎岖。本文介绍了一种校正机载高光谱影像在崎岖地形上空森林覆盖区域的 BRDF 效应的方法,在本文的补充中称为崎岖地形-BRDF (RT-BRDF) 校正。根据机载扫描仪和局部地形的特点,为每个像素计算局部视角和照明几何形状,并在崎岖地形的情况下使用这两个变量来调整 Ross-Thick-Maignan 和 Li-Transit-Reciprocal 核。新的 BRDF 模型适用于多线机载高光谱数据的各向异性。本研究中的像素数设置为 35,000,基于分层随机抽样方法,以确保全面覆盖视角和照明角度,并尽量减少 BRDF 模型对所有波段的拟合误差。基于中国林业科学研究院在普洱地区(中国)的 LiDAR、CCD 和高光谱系统 (CAF-LiCHy) 获取的多线机载高光谱数据,将应用 RT-BRDF 校正的结果与当前经验(C、太阳冠层传感器 (SCS) 加 C(SCS + C))和半物理(SCS)地形校正方法的结果进行了比较。定量评估和目视检查均表明,RT-BRDF、C 和 SCS + C 校正方法均可降低地形影响。然而,RT-BRDF 方法似乎更有效地降低多条航线重叠区域反射率的变化,其优势在于可以降低由宽视场 (FOV) 机载扫描仪、崎岖地形和长飞行时间内变化的太阳照射角度组合引起的 BRDF 效应。具体而言,针叶林和阔叶林的变异系数 (CV) 平均下降分别为 3% 和 3.5%。这种改进在近红外 (NIR) 区域(即 > 750 nm)尤为明显。这一发现为大面积机载高光谱勘测开辟了新的应用可能性。
高光谱长波红外遥感与区域三维重建相结合,可提高探测可靠性,减少在山区和丘陵地区搜寻地下物体(杀伤人员地雷、简易爆炸装置和未爆炸弹药)时的误报频率,因为这些地区难以使用扫雷器。多角度遥感使我们能够排除被遮蔽并以一定角度放置的物体的跳跃,并将含有异常物体的土壤与普通土壤和表面不规则物分开。给出了用于雷区测绘的光学数字综合体的概念,其主要基础是高光谱设备,该设备从两个光学通道接收数据,并将它们分成长波红外范围内的数十个光谱通道。一个光学通道扫描天底,第二个通道以一定角度扫描土壤表面。该综合体还包括一个可见光范围的相机,用于接收不同空间平面中的一系列图像以进行进一步的三维重建。描述了一种获取分段高光谱数据并将其与重建的数字地形模型相结合的方法,用于解决隐藏地面和地下物体的探测、侦察以及在不同坡度地形上规划人道主义排雷任务的问题。