• 船舶周围禁区。运营商必须为地球物理调查建立一个“声学禁区”,以便在操作声源之前,该区域在一定时间内没有任何海洋哺乳动物和海龟。 • 由经过培训的第三方独立受保护物种观察员进行视觉监控。受保护物种观察员是经过培训的专业人员,他们会寻找海洋哺乳动物,以最大限度地降低船舶撞击的可能性,并在一定距离内检测到海洋哺乳动物时关闭任何声源。 • 受保护物种观察员在地球物理调查期间进行独立报告。任何与受保护物种的互动都会立即报告给 NOAA 渔业和 BOEM。
• 2024 年 12 月 11 日,星期三 • 16:00 – 17:30 • 103 AB(会议中心)A31B 云和降水过程的进展:整合观测、建模和理论 I 海报 Yongjie Huang 博士,博士,俄克拉荷马大学诺曼校区,风暴分析和预测中心 (CAPS),诺曼,美国,Chunsong Lu,南京信息科学技术大学 (NUIST),南京,中国,Peng Wu,太平洋西北国家实验室,里奇兰,华盛顿州,美国,Xiaojian Zheng,阿贡国家实验室,阿贡,美国,Yi Huang,墨尔本大学,地理、地球与大气科学学院和 ARC 气候极端事件卓越中心,墨尔本,澳大利亚,Yangang Liu,布鲁克海文国家实验室,纽约州厄普顿,美国,Timothy Logan,德克萨斯 A&M 大学,大学城,美国,Greg M McFarquhar,美国俄克拉荷马大学恶劣天气和高影响天气研究与运行合作研究所,美国博尔德国家海洋和大气管理局 (NOAA) 化学科学实验室,张建豪,中国北京大学大气与海洋科学系,田晶晶,美国华盛顿州里奇兰太平洋西北国家实验室大气研究与测量系 会议提案
作者:Patrick G. Killeen 博士,地球物理顾问、退休研究科学家,加拿大地质调查局,渥太华 今年是十年一度的矿产勘探会议 (DMEC) 第四年担任《勘探趋势与发展》的赞助人。DMEC 组织了非常成功的勘探 '17 会议,该会议于 2017 年在多伦多举行,这是自 1967 年开始的系列会议中的第六次。今年 DMEC 的支持来自第 23 页列出的赞助公司。ETD 评论源自加拿大地质调查局 (GSC),50 多年来,GSC 的科学家每年都会编写一份公正的出版物,介绍矿产地球物理勘探的趋势和新发展。今年是 Patrick Killeen 撰写该评论的第 28 年,他最初是以 GSC 研究科学家的身份撰写的。加拿大勘探地球物理协会 (KEGS) 在 2007 年至 2016 年期间是 ETD 的赞助人。DMEC 和 KEGS 致力于推广地球物理学,特别是将其应用于石油以外的矿物勘探;培养地球物理学家的科学兴趣;并促进对该行业感兴趣的人士之间的高专业标准、友谊和合作。
1。Guatteri,M.,Mai,P.M。,&Beroza,G。C.(2004)。 用于强型地面运动预测的动态破裂模型的伪纳米近似。 美国地震学会的公告,94(6),2051- 2063年。 2。 Graves,R。W.和Pitarka,A。 (2010)。 使用混合方法宽带地面运动模拟。 美国地震学会的公告,100(5a),2095– 2123。 3。 Graves,R。和Pitarka,A。 (2016)。 在粗大断层上进行的运动地面运动模拟,包括3D随机速度扰动的影响。 美国地震学会的公告。 4。 Song,S.-G.,Dalguer,L。A.,&Mai,P.M。(2013)。 具有1分和2分统计的地震源参数的伪动态源建模。 Geophysical Journal International,196(3),1770– 1786年。 5。 Mai,P.M.,Galis,M.,Thingbaijam,K.K.S.,Vyas,J.C。,&Dunham,E。M.(2018)。 伪动力地面动作模拟中的故障粗糙度。 纯净和应用的地球物理Pageoph,174(9),3419–3450。 6。 Zongyi Li,Nikola Kovachki,Kamyar Azizzadenesheli,Burigede Liu,Kaushik Bhattacharya,Andrew Stuart和Anima Anandkumar。 参数偏微分方程的傅立叶神经操作员,2020。 7。 Andrews,D。J. (2005)。 破裂动力学,能量损失在滑动区域之外。 地球物理研究杂志,110,B01307。 8。 9。 10。Guatteri,M.,Mai,P.M。,&Beroza,G。C.(2004)。用于强型地面运动预测的动态破裂模型的伪纳米近似。美国地震学会的公告,94(6),2051- 2063年。2。Graves,R。W.和Pitarka,A。(2010)。使用混合方法宽带地面运动模拟。美国地震学会的公告,100(5a),2095– 2123。3。Graves,R。和Pitarka,A。(2016)。在粗大断层上进行的运动地面运动模拟,包括3D随机速度扰动的影响。美国地震学会的公告。4。Song,S.-G.,Dalguer,L。A.,&Mai,P.M。(2013)。具有1分和2分统计的地震源参数的伪动态源建模。Geophysical Journal International,196(3),1770– 1786年。5。Mai,P.M.,Galis,M.,Thingbaijam,K.K.S.,Vyas,J.C。,&Dunham,E。M.(2018)。 伪动力地面动作模拟中的故障粗糙度。 纯净和应用的地球物理Pageoph,174(9),3419–3450。 6。 Zongyi Li,Nikola Kovachki,Kamyar Azizzadenesheli,Burigede Liu,Kaushik Bhattacharya,Andrew Stuart和Anima Anandkumar。 参数偏微分方程的傅立叶神经操作员,2020。 7。 Andrews,D。J. (2005)。 破裂动力学,能量损失在滑动区域之外。 地球物理研究杂志,110,B01307。 8。 9。 10。Mai,P.M.,Galis,M.,Thingbaijam,K.K.S.,Vyas,J.C。,&Dunham,E。M.(2018)。伪动力地面动作模拟中的故障粗糙度。纯净和应用的地球物理Pageoph,174(9),3419–3450。6。Zongyi Li,Nikola Kovachki,Kamyar Azizzadenesheli,Burigede Liu,Kaushik Bhattacharya,Andrew Stuart和Anima Anandkumar。参数偏微分方程的傅立叶神经操作员,2020。7。Andrews,D。J. (2005)。 破裂动力学,能量损失在滑动区域之外。 地球物理研究杂志,110,B01307。 8。 9。 10。Andrews,D。J.(2005)。破裂动力学,能量损失在滑动区域之外。地球物理研究杂志,110,B01307。8。9。10。Tinti,E.,Fukuyama,E.,Piatanesi,A。,&Cocco,M。(2005)。 运动源时间函数与地震动力学兼容。 美国地震学会的公告,95,1211–1223。 Mai,P。M.和Beroza,G。C.(2002)。 一个空间随机场模型,以表征地震滑移中的复杂性。 地球物理研究杂志,107(B11),2308。 Mai,下午,Spudich,P.,Botwright,J。;有限源破裂模型中的低中心位置。 美国地震学会公告200; 95(3):965–980。Tinti,E.,Fukuyama,E.,Piatanesi,A。,&Cocco,M。(2005)。运动源时间函数与地震动力学兼容。美国地震学会的公告,95,1211–1223。Mai,P。M.和Beroza,G。C.(2002)。 一个空间随机场模型,以表征地震滑移中的复杂性。 地球物理研究杂志,107(B11),2308。 Mai,下午,Spudich,P.,Botwright,J。;有限源破裂模型中的低中心位置。 美国地震学会公告200; 95(3):965–980。Mai,P。M.和Beroza,G。C.(2002)。一个空间随机场模型,以表征地震滑移中的复杂性。地球物理研究杂志,107(B11),2308。Mai,下午,Spudich,P.,Botwright,J。;有限源破裂模型中的低中心位置。 美国地震学会公告200; 95(3):965–980。Mai,下午,Spudich,P.,Botwright,J。;有限源破裂模型中的低中心位置。美国地震学会公告200; 95(3):965–980。
地球固定且因此旋转的参考系几乎总是用于分析地球物理流动。转换为稳定旋转的参考系的运动方程包括两个涉及旋转矢量的项:离心项和科里奥利项。在地球固定参考系的特殊情况下,离心项恰好被重力质量吸引所抵消,并从运动方程中消失。当我们求解从地球固定参考系看到的加速度时,科里奥利项被解释为力。旋转参考系的视角放弃了全局动量守恒和不变性的性质,转而采用伽利略变换。然而,它可以大大简化地球物理流动的分析,因为只需要考虑相对较小的相对速度,即风和洋流。
1地球科学研究所(IGEO,CSIC-UCM),西班牙2号马德里大学(UCM),地球物理与天体物理学系,马德里,马德里,3大学3号大学Libre de Bruxelles(ULB)德国波茨坦
国家博士研究员(AICTE-NDF)(2004-08):全印度技术教育委员会 (AICTE) 颁发奖学金,在孟买印度理工学院地球科学系进行博士研究。研究目的是从高分辨率卫星数据和地面地球物理电阻率勘测中识别硬岩地形中的裂缝和深层含水层。使用常规和图像处理技术从卫星图像中识别线性构造。沿着和穿过选定的线性构造进行地球物理电阻率勘测,并在选择的观测井中进行泵测试,以获得含水层特性,如孔隙度、渗透率、透水性、比产量、比容量和下降度。通过 ArcGIS 软件的加权和基于排名的集成分析,识别出合适的地下水潜力和人工补给区。