随着低地球轨道 (LEO) 上的物体密度不断增加,对选定感兴趣物体的时间关键空间域感知 (SDA) 信息的需求也随之增加。虽然雷达系统提供了大部分 LEO 跟踪数据,但它们的每传感器总成本阻碍了其广泛普及,并导致时间覆盖缺口,从而阻碍决策。在本文中,我们研究了一个假设的低成本天体光学望远镜系统网络(全天候活动)如何补充雷达系统,以增强对任何给定的可探测 LEO 物体子集的监管。我们执行传感器访问和数据质量模拟,考虑天气、太阳排斥、容量和精度限制,以呈现显着的性能统计数据,例如自上次观察以来的时间延迟和位置知识误差。我们得出结论,尽管存在某些限制,但天体光学系统可以提供一种廉价而有效的方法来增强及时的 LEO SDA。
通过地面激光器发出的单个多 kJ 脉冲避免低地球轨道上的空间碎片发生烧蚀碰撞 Stefan Scharring、Gerd Wagner、Jürgen Kästel、Wolfgang Riede、Jochen Speiser 德国航空航天中心 (DLR),技术物理研究所,Pfaffenwaldring 38-40,70569 斯图加特,德国 摘要 我们对一个概念性想法进行了分析,即从地面激光站发射的单个高能激光脉冲是否可能导致碎片物体表面的物质烧蚀,从而产生后坐力,从而产生足够高的速度变化,以避免空间碎片碰撞。在我们的模拟中,我们评估了大气限制的影响,例如由于气溶胶消光导致的激光功率损失以及由于大气湍流导致的激光束增宽和指向抖动。为了补偿湍流,探索了自适应光学系统在合适发射器配置和激光导星组合方面的使用。根据 ESA DISCOS 目录,使用具有简化几何形状的虚拟目标来研究激光与火箭体、任务相关物体和非活动有效载荷之间的相互作用。此外,NASA 标准破碎模型可作为碰撞和爆炸碎片的参考,这些碎片在低地球轨道上产生了 9101 个碎片目标。对于这些物体,使用基于光线追踪的代码对激光烧蚀后坐力进行了研究,同时考虑了未知的目标方向以及残余激光指向误差,这些误差构成了整个 5 个维度(3 个旋转,2 个平移)的随机性来源,这些随机性来源采用蒙特卡罗方法解决。根据特定碎片物体平均高度的计算激光通量分布计算激光动量耦合。作为计算激光与物质相互作用的输入,使用了铝、铜和钢作为代表性空间碎片材料的辐照实验数据。从照射仰角、轨道位移、动量转移不确定性、成功概率、碎片材料以及碎片尺寸、质量和启动激光烧蚀过程所需的最小能量密度等方面讨论了激光赋予动量的模拟结果。1.引言由于空间碎片的数量不断增加,且难以进行轨道改造,近年来提出了几种基于激光的空间碎片远程动量转移 (MT) 概念[1][2]。特别是,由于连续发射 (CW) 激光器的商业化应用,其平均输出功率超过 10 kW 级,通过光子压力进行 MT 似乎变得可行。为了避免空间碎片碰撞,模拟已经表明,在多次激光站过境期间,通过目标照射可以实现几毫米/秒的足够高的速度增量 [1]。最近,在 LARAMOTIONS(激光测距和动量传递系统演化研究)研究中,研究了用于碎片跟踪和避免碰撞的相应激光站网络的可行性和估计性能。这项研究是由我们研究所领导的一个财团为欧洲航天局 (ESA) 开展的概念分析。[3] 概述了研究结果,[4] 列出了使用光子压力进行轨道碰撞避免的详细天体动力学可行性研究,而 [5] 显示了所采用的激光站网络的详细结果。激光烧蚀的动量耦合比光子压力的耦合高出 3 到 5 个数量级 [6]。因此,烧蚀通常被认为是在多次高能激光站过境期间通过降低近地点清除激光碎片的合适机制。然而,最近在真空中对几厘米大小的物体进行的跌落实验表明,激光烧蚀动量转移在避免空间碎片碰撞方面具有巨大的潜力,证明单个激光脉冲就可能使小的空间碎片状物体产生几十 ⁄ 的速度变化∆ [7]。
卫星在非常低的地球轨道(VLEO)中的操作与航天器平台和任务设计的各种好处有关。至关重要的是,对于地球观察(EO)任务,降低高度可以使较小且功能较小的有效载荷能够实现与较高高度处的较大仪器或传感器相同的性能,并具有对航天器设计的显着好处。因此,对这些轨道的开发的重新兴趣刺激了新技术的发展,这些技术有可能在此较低的高度范围内实现可持续运营。在本文中,为(i)新型材料开发了系统模型,这些材料可以改善空气动力学性能,从而减少阻力或增加对原子氧侵蚀的抵抗力以及(ii)大气 - 呼吸电力推进(ABEP),以持续的阻力补偿或VLEO减轻。还讨论了可以利用VLEO中空气动力和扭矩的态度和轨道控制方法。这些系统模型已集成到概念级卫星设计的框架中,该方法用于探索这些新技术启用的未来EO航天器的系统级交易。对光学高分辨率航天器提出的案例研究表明,使用这些技术降低轨道高度的显着潜力,并表明与现场与现行现状的任务相比,与现行成本相比,可以节省多达75%的系统质量和超过50%的开发和制造成本。对于合成的孔径雷达(SAR)卫星,质量和成本的降低显示为较小,尽管目前据指出,目前可用的成本模型并未捕获该细分市场的最新商业进步。这些结果是维持VLEO运营所需的其他推进和权力要求,并指出未来的EO任务可以通过在此高度范围内运行而受益匪浅。此外,已经表明,只有已经开发的技术的适度进步才能开始剥削该较低的高度范围。除了减少资本支出和更快的投资回报率,降低成本和增加获得高质量观察数据的上游收益外,还可以传递给下游EO行业,以及各种商业,社会和环境应用领域的影响。
4 51.76 400 H 32 5 /4 52.8 400 H 32 /H 32 /20/5 53.246±0.08 2x140 /h /20 6/6 53.596±0.115 2x170 54.94 400 H /H 32 /20 9/10 55.5 330 H /H 32 /20 10/20 10/11 57.290344 2X155 /330 H /H 32 /H 32 /20 11 /12 57.290344 /20 13/14 57.290344±0.3222±0.022 4x16 h /h 32 /20 14 /15 57.290344±0.3222±0.010 4x8 h /h 32 /h 32 /20 15/20 15/26 57.290344±0.322222222±0.222±0.22±0.22±0.20 16 /32 /32 h 4 32 h 4 32 h 4 32 h 4 32 h 3 4 x 3 4 x 3 4 x 3 4 x 3 4 x 3 4 32 h 3 4 x 3 4 x 3 4 x 3 4 x 3 4 32 h 3 4 x 3 4 32 2000/4000 V /V 32 /17 < /div>
摘要:在这项研究中,表现出亚毫升水平的精度k波段微波范围(MWR)设备,旨在通过空位(Leo Orbit(Leo)中的航天器形成(SFF)验证地球重力场(EGF)和数字高程模型(EGF)和数字高程模型(DEM)。尤其是,本文详细介绍了我们设计和开发的集成Beidou III B1C/B2A双重接收器,包括信号处理方案,增益分配和频率计划。与时间间隔计数器同步解决方案相比,接收器匹配MWR系统的0.1 NS精确同步时间频率基准,并通过静态和动态测试进行了验证。此外,通过使用不同的范围技术,可以深入探索MWR设备范围的精度。测试结果表明,使用同步的双双单向射程(DOWR)微波相蓄积框架,在测试过程中实现了40 µm和1.6 µm/s的精度,并在测试过程中实现了6 µm/s/s的范围速率速率精度。分析了整个MWR系统的范围误差源,而用于SFF相对导航设计的相对轨道动力学模型,用于编队场景的相对轨道动力学模型和自适应KalmanFulter算法。在高精度六个自由度(6-DOF)移动平台中,在硬件(HIL)模拟系统的硬件(HIL)模拟系统中测试了SFF相对导航的性能。使用MWR的自适应相对导航系统的最终估计误差约为0.42 mm(范围/rms)和0.87 µm/s(范围率/rms),这证明了EGF和DEM形成在太空中的未来应用的有希望的准确性。
1. Magalhães, Renato Oliveira de 和 Moreira, Herbi Junior Pereira 空间电源拓扑选择及其系统级建模与控制。《航空技术与管理杂志》[在线]。2020 年,第 12 卷 [2021 年 6 月 18 日访问],e2720。可从以下网址获取:。2020 年 7 月 15 日电子出版。ISSN 2175-9146。https://doi.org/10.5028/jatm.v12.1158。2. O. Shekoofa 和 E. Kosari,“基于系统级规范比较卫星电力子系统的拓扑结构”,2013 年第 6 届空间技术最新进展国际会议 (RAST),伊斯坦布尔,2013 年,第 671-675 页,doi:10.1109/RAST.2013.6581295。 3. Z. Xuan、K. Qing、Y. Wentao、X. Jie、L. Feng 和 Y. Xiangan,“MPPT 和 DET 方法下航天器太阳能电池阵列的功率评估指标”,2019 年欧洲空间电力会议 (ESPC),法国胡安莱潘,2019 年,第 1-4 页,doi:10.1109/ESPC.2019.8932076。
低地球轨道 (LEO) 卫星使更广泛的太空和太空服务消费者能够超越地球的陆地范围。这一以前由政府和军方主导的领域的商业化为美国政府和国防部 (DoD) 带来了机遇和风险。近年来,随着太空准入的增加,每年将卫星发射到轨道上的公司和组织的数量也在增加。尽管太空经济固有的高成本和高风险意味着许多此类公司可能会失败(就像以前的太空热潮中发生的那样),1 进入者的数量之多意味着太空生态系统比以往任何时候都更容易进入和更具竞争力。太空观察家预测,未来几年 LEO 将迎来数十个新竞争对手,其中一些竞争对手拥有大量资金支持和国家赞助。2 这种动态表明,国防部需要更加努力地维护和保护参与灰色地带 3 竞争的同行竞争对手所瞄准的国家资产。
图 2:近地轨道上已编目的物体数量(Kessler 等人,2010 年,第 4 页)该图显示了自人类首次启动太空计划以来物体数量的增长情况。2007 年大幅增加
太空科学的未来取决于我们吸引和调动学生参与科学、技术、工程和数学 (STEM) 领域的能力。真实的、亲身体验太空应用可提高学生对 STEM 学科的参与度和学习能力,并有助于吸引对 STEM 职业不感兴趣的学生。弗吉尼亚商业太空飞行管理局 (Virginia Space)、Twiggs Space Lab, LLC (TSL)、Orbital ATK、NearSpace Launch, Inc. (NSL) 和美国国家航空航天局 (NASA) 瓦洛普斯飞行设施合作开发了 ThinSat 计划,为学生团队提供设计、开发、测试和监控他们自己的实验有效载荷的机会,这些有效载荷将集成到一颗皮卫星中,并从 Orbital ATK 的 Antares 火箭的第二级发射。
本论文是亚洲开发银行(ADB)区域技术援助“亚太数字发展基金”项目实施的一部分,该项目由韩国电子亚洲和知识伙伴基金共同资助。亚行领域专家和数字连通性顾问 John Garrity 和亚行可持续发展和气候变化部(SDCC)高级公共管理专家(数字化转型)Arndt Husar 领导了该工作论文的编写,SDCC 数字技术发展部主任 Thomas Abell 负责总体指导。在研究本工作论文的过程中,我们采访了一系列行业专家以了解背景情况,此外还查阅了公开文件,包括研究报告、媒体文章、学术论文、网络研讨会和视频。亚行谨感谢在此过程中与我们分享专业知识的所有人。