用于空间领域感知应用的加速 AI 驱动大气预测 丹尼·费尔顿 诺斯罗普·格鲁曼公司 玛丽·艾伦·克拉多克、希瑟·凯利、兰德尔·J·阿利斯、埃里克·佩奇、杜安·阿普林 诺斯罗普·格鲁曼公司 摘要 太空激光和监视应用经常受到大气效应的影响。气溶胶、云和光学湍流引起的大气衰减和扭曲会产生有害影响,从而对任务结果产生负面影响。2019 年 AMOS 会议上简要介绍的一篇论文介绍了 2017 年在哈莱阿卡拉峰安装的地面仪器。这些仪器仍在积极收集数据,它们正在提供前所未有的空间环境实时表征,包括精确的大气传输损耗。虽然实时测量是理解和表征空间环境的第一步,但仅靠它们是不够的。为了优化任务规划,许多应用都需要对空间环境进行准确的短期大气预测。虽然大气预报并不是什么新鲜事,但最近随着 21 世纪人工智能 (AI) 技术的应用,大气预报的技能得到了极大提升。这些技术是高性能计算 (HPC) 和深度学习 (DL) 的结合。本演讲的主题是使用来自地面大气收集系统的 TB 级数据训练预测模型,并使用图形处理单元 (GPU) 加速其训练和推理的能力。本研究侧重于预测的三个时间尺度。这些时间尺度包括短期(0 到 60 分钟)、中期(1 小时到 3 小时)和长期(3 到 48 小时)。这些时间尺度代表激光和/或监视应用和任务的各种决策点。在短期预测情况下,多种 DL 技术应用于从光学地面站 (OGS) 收集的本地数据。这些 DL 技术包括使用 U-Net 卷积神经网络和多层感知器 (MLP) 和随机森林 (RF) 模型的集合。 MLP 用于从激光云高仪和红外云成像仪 (ICI) 等仪器收集的点数据。对于中间时间尺度,卷积长短期记忆 (LSTM) 网络和 U-Net 均使用来自 NOAA 地球静止卫星云图集合的图像进行训练。最后,组合 U-Net 和自动编码器神经网络用于训练由 HPC 数值天气预报 (NWP) 模型模拟的大气预测器以进行长期预测。NWP 会产生许多 TB 的数据,因此,使用这些神经网络是优化其预测能力的理想选择。本研究利用了多种 HPC 资源。其中包括由四个 NVIDIA Tesla V100 GPU 组成的内部 GPU 节点以及毛伊高性能计算中心 (MHPCC) 的资源。结果表明,在几乎所有情况下,这些预测技术都优于持久性,而且偏差很小。使用 HPC 和 DL 推理实时进行预测的能力是未来的重点,将在会议上报告。1. 简介大气衰减和失真降低了太空激光和监视应用的功效。特别是,云层可以部分或完全遮挡目标,并阻止或要求降低光通信系统的数据速率。但是,通过准确表征和预测大气影响,可以减轻许多负面影响。本研究的目的是开发和完善一种最先进的大气预测系统,该系统可生成高分辨率的大气衰减预测,以支持太空激光和监视应用的决策辅助。为了实现这一目标,HPC 和 AI 的进步与数 TB 的高分辨率地面和太空大气数据集合相结合。多种 HPC 资源用于处理本研究所需的地面和卫星数据,并使用四个 NVIDIA Tesla V100 GPU 加速 AI 预测技术的训练和推理。该技术用于进行多时间尺度大气预测:1 小时预测、2 小时以上预测和 48 小时预测。最长 1 小时;最长 2+ 小时;最长 48 小时。最长 1 小时;最长 2+ 小时;最长 48 小时。
网络控制 (NC) 团队和相关的网络和系统控制室(别名“系统”室)是 GSOC 运营链的一部分。该团队由 24/7 轮班工人和支持技术人员组成,他们协调轮班团队并控制“系统”室的工作和运营。这个房间是一个中央枢纽,所有 GSOC 控制室或外部合作伙伴的所有连接(运营和技术)都在这里路由到世界各地的地面站。作为一个永久驻扎的岗位,它还充当所有项目和所有站点的语音联络中心(通过电话或专用语音会议系统),例如在紧急情况下能够快速响应。此外,此功能还需要在节假日或 GSOC 调度办公室无人值守的夜间协调特殊联系请求。“系统”的主要任务包括日常运行中的网络控制、LEOP 中的 NOPE 支持、GSOC 中的连接和网络监控。
在数字通信系统中,数字信号都是通过调制作用才能在高频段进行无线传输的。在实际应用中,调制方式的选择不仅能实现信息的快速传输,还能适应实际信道的干扰,在解码时获得较低的误码率,增加通信系统的抗干扰能力和可靠性。所以说,在数字通信系统的设计中,选择哪种数字调制方式是一个重要的问题。下面将对几种常用的调制方式进行研究,并通过比较和仿真来选择出符合系统要求的数字调制方式和通信台站。调制方式可分为模拟调制和数字调制,数字调制通常是指采用数字信号对射频载波进行调制,这种调制方式相对于模拟调制,具有抗干扰能力强、处理和加密方便等显著优点。数字调制与模拟调制类似,也可以对射频载波的幅度、相位和频率进行调制,但由于信号不连续,因此分别称为幅度键控(ASK)、相移键控(PSK)、频移键控(FSK)等。ASK具有恒包络信号的特性,不适用于数字信号调制。
恒定面积抛物面天线和反射镜的远场角波束宽度与发射信号的波长成正比。因此,天线或透镜的发射信号功率分布在与波长平方成正比的立体角上,即到达接收器的信号功率与频率平方成正比。对于给定的发射孔径尺寸,频率越高,到达接收器的信号功率越大。接收器噪声也会随着频率的增加而增加。在光频率下,与频率成正比的量子噪声占主导地位。在射频下,量子噪声微不足道:其他不随频率强烈变化的噪声源占主导地位。因此,首先,接收器噪声与频率成正比。由于接收信号功率与频率平方成正比,接收器信噪比 (SNR) 与频率成正比。无差错通信的最大可能速率会随着接收的 SNR 而增加。这是光通信的主要优势。迄今为止,NASA 使用的最高下行射频通信频率是深空 Ka 波段下行频率 32 千兆赫 (GHz)。典型的下行光波长为 1550 纳米 (nm),相当于 193.5 太赫兹 (THz) 的频率。因此,光与射频频率之比为 193.5 THz/32 GHz,约为 6000。在其他所有条件相同的情况下,1550 nm 光通信系统的接收器 SNR 有可能比 Ka 波段系统高 6000 倍。
Rockwell Collins V/UHF 19” 机架系统的核心是 Talon RT-8200 接收器/发射器,它以 AM 或 FM 模式运行,频率范围为 30-400 MHz,信道间隔为 25 kHz,ATC 频段(108-137 MHz)为 8.33 kHz。RT 配有可选的电子保护措施 (EPM) 波形,已在军用飞机环境中证明其平均故障间隔时间超过 4000 小时。插入式、模块化结构和内置测试有助于识别和更换故障组件。可选的滑动安装套件可快速访问和无需工具即可拆卸机架系统。
摘要。双重差异技术是Champ的标准处理方法(具有挑战性的Minisatellite有效载荷)GPS(全球定位系统)掩盖数据,以纠正卫星时钟错误。为了应用此技术,需要实施全球基金GPS地面网络。该网络(“高率和低潜伏期网络”)是由Geoforschungszentrum Potsdam(GFZ)和JET推进实验室(JPL)共同安装的,以准备Champ Sacdultation实验,并由这两个机构共同运行。目前(2001年5月/6月)由28个站组成(18个站点(由JPL资助和经营,由GFZ资助和运营)。讨论了将地面站数据用于GPSSacultation处理的方面。网络配置允许每个掩盖事件约3.5个地面站进行掩盖数据处理。发现该冗余的全球分布是不规则的。网络满足数值天气预测(NWP)系统施加的低潜伏期要求。首次将1/5、1/10和1/30 Hz的采集率降低到GPS掩盖数据处理中。对于1,400个垂直干燥温度剖面的三个结果集(分别使用1/5、1/10和1/30 Hz),表明,与相应的气象分析相关的干燥温度的平均值和标准偏差几乎与引用1 Hz数据集的平均值相同。1简介德国地球科学冠军卫星于2000年7月15日从俄罗斯宇宙斑块发射。冠军的测量方法用于确定地球的重力和磁场,并使用创新的GPS无线电掩盖技术在全球尺度上获得有关垂直温度,湿度和电子密度分布的精确信息(Reigber等,2002)。
ACTE 终端设备审批委员会 BSS 广播卫星服务 CTR 通用技术法规 eirp 等效全向辐射功率 EMC 电磁兼容性 ERC 欧洲无线电通信委员会 ERMES 欧洲无线电信息系统 FSS 固定卫星服务 GSM 全球移动通信系统 ISDN 综合业务数字网 ITU-R 国际电信联盟 - 无线电通信 LMES 陆地移动地球站 LNB 低噪声块下变频器 LO 本振 NTP 网络终端点 ONP 开放网络配置 PBX 专用交换机 RES 无线电设备和系统 S-PCN 卫星个人通信网络 SES 卫星地球站(及系统;自 1993 年 6 月起) SNG 卫星新闻采集可移动地球站 TBR 法规技术基础 TC 技术委员会 TES 可移动地球站 TRAC 技术法规应用委员会 TTE 电信终端设备 TVRO 电视接收专用 UMTS 通用移动通信系统 VSAT 甚小孔径终端
8.1.1 “电信终端”指令 ( 10) ......................................................................120 8.1.2 终端指令的拟议扩展 ( 12) ........................................................................121 8.1.3 低电压指令和电磁兼容性 (EMC) 指令 121 8.2 除 EC 指令要求外可能的标准化 .............................................................121 8.3 “基本要求”的实施 .............................................................................................122 8.3.1 关于用户安全的“基本要求” .............................................................122 8.3.1.1 可能的电气安全标准 .............................................................122 8.3.1.2 可能的放射防护标准 .............................................................122 8.3.1.3 可能的其他生理危害标准 .............................................................122 8.3.2 关于公共电信网络 O 运营商员工安全的“基本要求” (PTNO).................................................123 8.3.3 关于 EMC 的“基本要求”..............................................................................123 8.3.3.1 关于终端设备在存在电磁场的情况下“正常”运行的可能标准.............................................................123 8.3.3.2 关于限制终端设备发射的可能标准.........................................................................................123 8.3.4 关于保护 PTN 免受损害的“基本要求”.............................................................124 8.3.5 关于有效