摘要。双重差异技术是Champ的标准处理方法(具有挑战性的Minisatellite有效载荷)GPS(全球定位系统)掩盖数据,以纠正卫星时钟错误。为了应用此技术,需要实施全球基金GPS地面网络。该网络(“高率和低潜伏期网络”)是由Geoforschungszentrum Potsdam(GFZ)和JET推进实验室(JPL)共同安装的,以准备Champ Sacdultation实验,并由这两个机构共同运行。目前(2001年5月/6月)由28个站组成(18个站点(由JPL资助和经营,由GFZ资助和运营)。讨论了将地面站数据用于GPSSacultation处理的方面。网络配置允许每个掩盖事件约3.5个地面站进行掩盖数据处理。发现该冗余的全球分布是不规则的。网络满足数值天气预测(NWP)系统施加的低潜伏期要求。首次将1/5、1/10和1/30 Hz的采集率降低到GPS掩盖数据处理中。对于1,400个垂直干燥温度剖面的三个结果集(分别使用1/5、1/10和1/30 Hz),表明,与相应的气象分析相关的干燥温度的平均值和标准偏差几乎与引用1 Hz数据集的平均值相同。1简介德国地球科学冠军卫星于2000年7月15日从俄罗斯宇宙斑块发射。冠军的测量方法用于确定地球的重力和磁场,并使用创新的GPS无线电掩盖技术在全球尺度上获得有关垂直温度,湿度和电子密度分布的精确信息(Reigber等,2002)。
在密码学领域,量子密钥分发 (QKD) 是量子信息理论的一种应用,近年来引起了广泛关注。它允许在两方或多方之间建立密钥,比传统密码学(基于离散对数和素数分解)更安全。在不久的将来,实现 QKD 网络(尤其是远距离网络)最有希望的方式是通过卫星星座。本文考虑了优化卫星轨道的问题,以便在固定时间内最大化地面站网络共享的最小密钥长度。考虑了不同的站网络,并强调了它们的地理分布对设计和性能指标的影响。考虑的网络包括:一个全球星座、一个欧洲区域星座,以及两个在两个不同纬度窄带中有站群的网络。然后考虑卫星间链路的影响,以及在某些情况下它们如何提高性能。最后分析了所考虑的星座的日常表现。2023 COSPAR。由 Elsevier BV 出版 这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
美国军方继续鼓励对强大的卫星通信的需求,以便成功执行国防任务。立方体卫星是一种小型航天器,最初用于扩大航空航天和卫星通信领域的教育机会。这项研究探索了现有和潜在的地面站架构选项,以集成来自立方体卫星的自由空间光通信下行链路。未来的实验计划将侧重于在更多样化的环境中应用此功能,以包括扩展的地面架构机会。系统工程设计和架构方法有助于了解当前的硬件和软件选项以及未来扩展机会的限制。通过考虑可比较的规划方法,可以组织架构开发的替代方案,以帮助识别子系统和地面通信接口的控制因素。作为一个成熟的立方体卫星通信系统,现有的移动立方体卫星指挥和控制 (MC3) 架构是实验集成和最终考虑计划概念验证的绝佳候选者。
I.引言卫星通信系统由两个主要细分市场组成,即空间段和地球或地面站。地面站系统与空间中的卫星协调通信过程。在少数情况下,小地面站系统可以建在海上的大型船上,也可以在飞机上用于移动通信服务。地面站由各种电子通信系统组成,包括用于传输和接收信号的天线系统。低噪声块向下转换器,高功率放大器(HPA)发射器,功率从几瓦到一百千瓦时,具体取决于容量和法规,上下转换器,调制解调器,编码器,编码器,多路复用器,控制和跟踪系统,用户端子的接口。这些系统进一步分为各个部分,例如操作,控制,射频,网络部分,具有不同的功能[1]。图1显示了不同类型的地面站的简单视图。
摘要 地球观测低地球轨道 (LEO) 卫星收集大量数据,这些数据需要先传输到地面站,然后再传输到云端进行存储和处理。如今,卫星会贪婪地向地面站传输数据,每次接触期间都会充分利用带宽。我们表明,由于地面站的布局和轨道特性,这种方法会使某些地面站超载而其他地面站负载不足,从而导致吞吐量损失和图像的端到端延迟较大。我们提出了一种名为 Umbra 的新型端到端调度系统,该系统通过考虑空间和时间因素(即轨道动态、带宽限制和队列大小)来规划从大型卫星星座通过地面站到云端的传输。Umbra 的核心是一类称为保留调度的新型调度算法,其中发送方(即卫星)有选择地未充分利用一些与地面站的链路。我们表明,Umbra 的反直觉方法可将吞吐量提高 13-31% 并将 P90 延迟降低 3-6 倍。
赛峰数据系统地面站,尤其是用于地球观测的地面站,得到了全球航天机构、商业运营商和主要集成商的认可。赛峰数据系统解决方案在全球部署了 250 多个地面站,可靠、可扩展且性能极高。它们专为多任务而设计,具有显著优势、出色的投资回报和长期运营效益。
移动立方体卫星指挥和控制 (MC3) 地面站网络为美国政府组织、承包商和教育机构开发的小型卫星提供通信基础设施。随着网络的成熟,管理其运营的网络安全要求也随之成熟。通过对软件、硬件和网络实施严格的配置限制,地面站无法在标准操作之外使用这些设备。这对经常在课程中涉及此类设备以进行实践教学和研究的教育机构来说是一个特殊的问题。这项研究工作侧重于设计、实施和测试与 MC3 并行的地面站,使教育机构可以自由创新和进行研究。并行站将共享 MC3 天线,这是地面站最有价值的组件,但提供单独的设备机架,用作单独的地面站。这项研究直接适用于目前是 MC3 系统成员的机构。目前,海军研究生院、美国海岸警卫队学院和美国海军学院已表示对并行地面站感兴趣。最终的方法使这些教育机构受益,因为它消除了发展障碍,并在竞争激烈的全球航空航天业中提高了教学影响力。
3 我们授予空间运营商的许可证包括永久地面站、NGSO地面站、可移动地面站、地面站网络许可证和 GNSS 中继器。请参阅:申请卫星地面站许可证 - Ofcom。 4 无需许可证即可运行的频率列表可在我们的界面要求 2016 中找到:ir2016.pdf (ofcom.org.uk)。 5 管理卫星使用电磁频谱的规则包含在《无线电规则》中,该国际条约是英国签署国之一。 6 无线电规则 (itu.int) 7 请参阅谅解备忘录附件 A:mou_2004_international_rep.pdf (ofcom.org.uk)。 8 我们还在国际电信联盟代表海峡群岛、马恩岛和英国海外领土,请参阅:mou_ots_2007.pdf (ofcom.org.uk)。
ULISSES 地面站提供以下功能:• 通过 USB 准备 ULISSES 目标库以加载到机载 ULISSES 声学处理器中 • 将按照 Stanag 4283 格式化的原始 Sonobuoy 数据从 ULISSES 可移动磁盘导入地面站。地面站允许实时处理(快速时间分析)记录的 Sonobuoy 数据 • 为操作员提供一组目标库功能,以改进目标识别和分类过程。