b'porous [13]或树突[14]生长形态。[9]在基于TFSI的电解质中检测到具有不同形状的半球3D颗粒,这是施加电流密度的函数。[12]在Mg(TFSI)2盐电解质中,MGCL 2作为添加剂,连续的剥离和镀金导致SEI层的破裂和改革,从而在相应的断裂部位和不均匀的MG沉积中产生大量有效的电流密度。[13]通过这种机制,半球形沉积物进一步降解为多孔形态和被困的沉积物,这些沉积物是不可逆转地损失的。最极端的非均匀Mg生长形式是树突的形成,在mg阳极下发生的频率要小得多。到目前为止,仅在0.921 MACM 2的电流密度下仅针对MEMGCL的0.5 MOLDM 3溶液检测到树突。[14]'
,例如厚度依赖性带隙,对硅,光电子和能量应用以外的超缩放数字电子设备具有吸引力。[1] TMD的悬挂式无键结构提供了具有散装半导体的高质量范德华异质结构的独特可能性,用于实施高级异质结构设备,利用界面处利用当前的运输。[2-5]尤其是,单层或几层MOS 2与宽带gap半导管的整合,例如III III氮化物(GAN,ALN和ALGAN ALLOYS)和4H-SIC,目前是越来越多的兴趣的对象(例如,对于高反应性双音群的现象,都可以提高兴趣的对象紫外线),[6-11]和电子设备(例如,用于实现异缝二极管,包括带对带隧道二极管的二极管)。[12–17]
诸如厚度相关的带隙,这对于硅以外的超大规模数字电子学、光电子学和能源应用具有吸引力。 [1] TMD 的无悬挂键结构为实现高质量范德华异质结构与块体半导体提供了独特的可能性,从而实现利用界面电流传输的先进异质结器件。 [2–5] 特别是,单层或几层 MoS 2 与宽带隙半导体(如 III 族氮化物(GaN、AlN 和 AlGaN 合金)和 4H-SiC)的集成,目前在光电子学(例如,用于实现覆盖可见光和紫外光谱范围的高响应度双波段光电探测器)[6–11] 和电子学(例如,用于实现异质结二极管,包括带间隧道二极管)中越来越受到关注。 [12–17]
在本论文中,灵感是从板球中的时间特征检测电路中汲取的,用于设计双突触延迟元素(基于兴奋性 - 抑制性平衡),从而诱导了基于资源的基于基于资源的基于基于资源的基于基于资源的兴奋性。由于不均匀的动力学,这种双突触元素在混合信号硬件中实现时会产生时间延迟的分布,无论是在单个神经元之间还是在单个神经元之间。在这里,这被用作时空信息表示和学习所需的可变性的来源(作为专用的轴突或神经元延迟或模仿DEN-DENITIC动态的资源 - 有效替代方案。
我们通过填充液滴蚀刻的纳米霍尔斯,基于嵌入单晶Algasb矩阵中的煤气量点(QD)(QD)展示了一种新的量子限制的半导体材料。液滴介导的生长机制允许形成非经典单QD光源所需的低QD密度。光致发光(PL)实验表明,在电信波长下,燃气QD具有间接的单向频率跨度。这是由于受纳米结构尺寸控制的量子限制的结果,导致导带中γ和L阀的比对。我们表明,在接近1.5μm波长的直接带隙状态下,GASB QD具有I型频带对齐,并且具有狭窄的光谱线的激发量发射,并且由于高材料质量和尺寸均匀性,因此具有狭窄的光谱线和非常低的PL发射不均匀扩展。这些特性在红外量子光学和量子光子整合的应用方面非常有前途。
摘要:机械应变工程对于许多集成的光子应用一直很有希望。然而,对于材料电子带隙的工程,应变均匀性与与光子集成电路(图片)的集成兼容性之间存在权衡。在此,我们采用了氮化硅(SIN X)应激源的简单凹陷型设计,以达到均匀的应变,并在图片上感兴趣的材料中具有增强的幅度。正常的,均匀的0.56%薄层紧张的锗(GE) - 隔离剂(GOI)金属 - 肌电指挥剂 - 金属光二极管。该设备在1,550 nm时表现出1.84±0.15 A/W。在1,612 nm处提取的GE吸收系数增强了〜3.2×至8,340 cm -1,并且优于0.53 Ga 0.47的高度,最高为1,630 nm,受测量光谱限制。与非衰退的设备相比,观察到C频带中的额外吸收系数改善10%至20%,在L频带中观察到40%至60%。这项工作促进了自由空间PIC应用的凹陷GOI光电二极管,并为各种铺平了道路(例如ge,GESN或III-V基于图片上均匀紧张的光子设备。
B'Abstract Aharoni和Howard,以及独立的Huang,Loh和Sudakov提出了以下彩虹版本的ERD \ XCB \ XCB \ X9DOS匹配猜想:用于正整数N,K,M,使用N \ Xe2 \ X89 \ X89 \ X89 \ XA5 km(如果每个人)f 1,f 1,f 1,f 1,f 1,如果。。,f m \ xe2 \ x8a \ x86 [n] k的大小大于最大{n k \ xe2 \ x88 \ x92 n \ x92 n \ xe2 \ x88 \ x88 \ x92 m +1 k,km \ xe2 \ xe2 \ x88 \ x88 \ x92 1 k},然后存在Emubse em subse et emsetse。。。,e m,以至于所有i \ xe2 \ x88 \ x88 [m] e i \ xe2 \ x88 \ x88 f i。我们证明存在一个绝对常数n 0,因此该彩虹版本适用于k = 3和n \ xe2 \ x89 \ xa5 n 0。我们将这个彩虹匹配的问题转换为特殊的HyperGraph H上的匹配问题。然后,我们将几种现有技术结合在均匀超图中的匹配中:\ xef \ xac \ x81nd h中的吸收匹配m;使用Alon等人的随机化过程与\ Xef \ Xac \ x81nd几乎是H \ Xe2 \ X88 \ X92 V(M)的几乎常规子图; \ xef \ xac \ x81nd在H \ xe2 \ x88 \ x92 V(m)中几乎完美匹配。要完成该过程,我们还需要证明在3-均匀的超图中的匹配项上获得新的结果,这可以看作是Luczak和Mieczkowska结果的稳定版本,并且可能具有独立的利益。
通过热液过程和硝化化合物合成的类似饼干的co-vn@c在锂离子电池(LIBS)中具有出色的电化学特性,并且在氧气进化反应(OER)中具有阳极材料和催化剂。具有丰富暴露活性位点的金属CO纳米颗粒在原位均匀地隔离,以便它们强烈地粘附在VN底物上,从而导致加速电荷转移并增强稳定性。复合材料的碳壳充当缓冲层,可减轻体积的膨胀,电池的稳定容量为335.5 mAh g -1后500循环后,以0.5 a g -1循环。以不同的速率进行测试后,电流密度恢复为0.1 a g -1,Co-Vn@C电极的容量返回到588.0 mAh g -1。此外,Co-Vn@C在氧气演化反应中具有出色的电化学催化活性。这项工作阐明了长期的稳定性和高速率的电极材料,用于将来的LIBS开发,该策略为电化学催化的高性能电极材料设计提供了见解。