此前,飞机机身结构中连接机翼机身和垂直尾翼机身的吊耳已提交有限元分析 [2-3]。由于快速加速和复杂运动,机翼表面将承受巨大的载荷 [4]。由于弯矩最大,机翼根部将承受最大的应力集中 [5]。支架用于将机翼固定在机身框架上。机翼的弯矩和剪应力通过这些附件传递到机身 [6]。此外,疲劳是指结构部件强度在运行过程中不断下降,在极低的极限应力水平下就会发生故障。这是因为重复载荷作用的时间较长。基于静态结构分析,利用应力寿命技术和 Goodman 标准进行的疲劳寿命计算预测几何形状是安全的 [7]。因此,机翼机身吊耳连接结构采用有限元分析和疲劳寿命计算方法进行设计。
∗∗ 进气道完全安装并喷漆。 ∗∗ 垂直尾翼和稳定器完成,包括固定系统。 ∗∗ 所有控制喇叭都用夹具安装,所有表面都用铰链连接。 ∗∗ 所有控制表面都用铰链连接并修整。 ∗∗ 所有伺服支架都已安装。 ∗∗ 所有起落架舱门和舱口都已为您切割和修整。 ∗∗ 座舱盖框架和固定系统全部为您完成。 ∗∗ 预模制起落架舱门,修整好即可安装。 ∗∗ 机翼修整、预对准和倾角设置好。 ∗∗ 预安装发动机旁通管道,组装排气管。 ∗∗ 完全组装和安装复合材料、保形、挡板燃料电池。 ∗∗ 包含最高品质物品的完整硬件包。 ∗∗ 完整的燃油系统硬件,包括料斗油箱、活塞、燃油管和 T 形接头! ∗∗ .... 还有更多,无法一一列举!
16 摘要 这是多阶段项目第一阶段进行的技术工作的最终报告,该项目的目标是设计、开发和飞行评估一种先进的复合材料尾翼部件,该部件在生产环境中制造,成本与金属部件相比具有竞争力,重量至少节省 20%。该项目选定的尾翼部件是 L-1011 飞机的垂直尾翼盒。箱体结构从机身生产接头延伸到翼尖肋,包括前后翼梁。对各种设计方案(如加固盖和夹层盖)进行了评估,以得出一种最有可能满足项目目标的配置。所选的首选配置包括带有模制整体加固翼梁的帽形加固盖、铝桁架复合材料肋条和带有整体模制盖的复合材料微型夹板腹板肋条。进行了材料筛选测试以选择先进的复合材料材料
民用和军用飞机设计中都必须考虑俯冲速度稳定性。飞机越稳定,就要牺牲越多的性能。反之,性能更高的飞机天生就不太稳定。这就是为什么几乎所有设计巡航速度为 0.90 马赫、配备传统飞行控制装置的飞机都配备了大型垂直尾翼和水平稳定器。主要原因是需要满足国际适航认证机构规定的俯冲速度稳定性标准。但是如此大尾翼会带来阻力,从而牺牲燃料和航程。FEW 使达索能够为 7X 配备明显更小、阻力更低的尾翼,同时仍能满足监管的俯冲速度稳定性要求。例如,最大演示俯冲速度为 0.93 马赫,仅比 7X 的 0.90 马赫高出 0.03 马赫。如果没有 FEW,MMo 将被限制在 0.86 马赫,因为认证机构通常要求 0.07 马赫的缓冲。同样,当不受马赫限制时,最大演示俯冲速度为 405 节,仅比 Falcon 7X 的 370 节 VMO 速度高出 35 节。使用传统的灯光控制,Kerherve 估计 VDF 至少要达到 430 节才能验证相同的 VMO。简而言之,FEW 飞行控制提供的保护使飞机制造商能够提高最大巡航速度,同时与配备传统飞行控制的飞机相比,提供相同或更好的高速安全裕度。
1 Aura Vector Consulting,3041 Turnbull Bay Road,New Smyrna Beach,FL 32168 2 Toyota Technical Center,8777 Platt Road,Saline,MI 48176 摘要 本研究涉及对 Cessna T-303 Crusader 双引擎飞机垂直尾翼疲劳裂纹扩展的飞行中监测。在实验室中对带凹槽的 7075-T6 铝制飞机槽梁支撑结构进行了周期性测试。在这些疲劳测试期间采集了声发射 (AE) 数据,随后将其分为三种故障机制:疲劳开裂、塑性变形和摩擦噪声。然后使用这些数据来训练 Kohonen 自组织映射 (SOM) 神经网络。此时,在 T-303 飞机垂直尾翼的肋骨之间安装了类似的槽梁支撑结构作为冗余结构构件。随后从初始滑行和起飞到最终进近和着陆收集 AE 数据。然后使用实验室训练的 SOM 神经网络将飞行测试期间记录的 AE 数据分类为上述三种机制。由此确定塑性变形发生在所有飞行区域,但在滑行操作期间最为普遍,疲劳裂纹扩展活动主要发生在飞行操作期间 - 特别是在滚转和荷兰滚机动期间 - 而机械摩擦噪声主要发生在飞行期间,在滑行期间很少发生。SOM 对故障机制分类的成功表明,用于老化飞机的原型飞行结构健康监测系统在捕获疲劳裂纹扩展数据方面非常成功。设想在老化飞机中应用此类结构健康监测系统可以警告即将发生的故障,并在需要时而不是按照保守计算的间隔更换零件。因此,继续进行这项研究最终将有助于最大限度地降低维护成本并延长老化飞机的使用寿命。关键词:老化飞机,飞行中疲劳裂纹监测,Kohonen自组织映射,神经网络,结构健康监测 简介 飞机疲劳开裂 如今,飞机的使用寿命通常比汽车更长。这是由于许多因素造成的,包括飞机的成本、政府法规以及故障的严重后果。由于飞机的使用寿命预期如此之长,因此引发了许多问题。问题的主要来源,也是本研究的主题,可能是疲劳裂纹的存在和增长。修复疲劳裂纹造成的损坏的能力一直不是问题,但疲劳裂纹增长的检测和监测已被证明是一个真正的挑战。疲劳开裂是由于低于正常延展性金属的屈服强度的循环载荷导致的脆性断裂。裂纹尖端的高度集中应力导致在裂纹前方形成心形塑性变形区。该塑性区应变随着循环载荷而硬化,当金属的延展性耗尽时会断裂
如今,飞机的初步设计阶段变得非常具有挑战性,因为需要满足涉及不同应用领域的更苛刻的要求。从这个角度来看,无论是在飞机行业还是在学术研究团体中,都需要简单的设计工具来执行快速可靠的多学科分析和优化。本文全面概述了 JPAD(飞机设计程序的 Java 工具链),这是一个基于 Java 的开源库,被认为是一种快速高效的工具,可用于支持飞机的初步设计阶段及其优化过程。该库已在那不勒斯“费德里科二世”大学工业工程系完全实现,目前仍在开发中。该库的主要目标是对参数定义的飞机模型进行快速多学科分析并搜索优化配置。在该工具的开发过程中,遵循的所有飞机初步设计和分析的基本原理和方法都已在一些飞机设计教科书中进行了详细描述。[1] [2] [3] [4] [5] [6] [7]。JPAD 的主要特点之一在于对飞机参数模型(被认为是一组相互连接和参数化的组件)和可用分析的智能管理。开发该库的目的是简化用户输入文件的组成,并以令人满意的精度进行快速分析 [8] [9]。第 2 节将展示库架构及其主要优势。另一个关键点是可以轻松地将 JPAD 与其他外部工具连接起来,以实现更高的精度。如 [10] 所述,JPAD 库是大量类似软件工具(包括免费软件和商业软件)的替代品。这些工具中的大多数都有重要的历史,其中许多已经使用了几十年。其中一些软件的设计标准很差,文本输入很死板,没有可视化功能。这就是为什么 JPAD 在开发时非常注重简单性和灵活性的主要原因。此外,它被认为是一种开源工具,与目前最流行的飞机设计程序(如 Advance Aircraft Analysis [11]、RDS [12] 或 Piano [13])不同。JPAD 是一个通用计算库,包含多个模块,其中重要的是突出空气动力学和稳定性模块。这些是基于那不勒斯费德里科二世大学 DAF 研究小组开发的几种预测方法,例如用于机身 [14] [15] 或垂直尾翼 [16] [17] 分析的方法。开发此类方法的能力源自该小组在区域涡轮螺旋桨飞机和通用航空飞机应用领域多年活动期间通过数值分析和风洞测试获得的经验,如 [18] [19] [20] 所述。