借助 CATIA Magic,MBSE 使工程师能够无处不在、透明地访问数据,而无需依赖点对点集成。通过收购 No Magic,达索系统基于 3D EXPERIENCE® 平台增强了其系统工程能力和行业解决方案体验。行业现在可以开发“体验互联网”——智能和自主的体验,以数字方式连接物理世界中的产品、自然和生命。No Magic 解决方案集成在 3D EXPERIENCE ® 平台上,以开发一流的基于模型的系统工程和系统工程系统解决方案,并提供更名为 CATIA Magic 的产品。CATIA Magic 解决方案是市场上最强大且最符合标准的解决方案。
在计算流体力学、有限元分析、基于模型的系统工程、产品生命周期管理和系统建模等领域拥有公认的能力,而这些领域是数字工程的基础。他们还积极开展教育和培训计划,以满足从技术人员到研究生等各种需求。这份白皮书是在多个组织的意见下制定的,但学术机构是主要贡献者。预计数字孪生卓越中心的合作重点将主要放在劳动力发展上,因此,从一开始就让学术界参与进来至关重要。对这一关键领域的投资将进一步加强该地区支持空军数字孪生工作的能力,并帮助将数字孪生技术过渡到空军以供未来使用。
借助 CATIA Magic,MBSE 使工程师能够无处不在、透明地访问数据,而无需依赖点对点集成。通过收购 No Magic,达索系统基于 3D EXPERIENCE® 平台增强了其系统工程能力和行业解决方案体验。行业现在可以开发“体验互联网”——智能和自主的体验,以数字方式连接物理世界中的产品、自然和生命。No Magic 解决方案集成在 3D EXPERIENCE 平台上,以开发一流的基于模型的系统工程和系统工程系统解决方案,并提供更名为 CATIA Magic 的产品。CATIA Magic 解决方案是市场上最强大且最符合标准的解决方案。
协作不是火箭科学;它只不过是确保每个人都使用相同的信息。但是,正如这家国防承包商的火箭科学家所证明的那样,协作至关重要。导弹开发商部署了一个基于模型的系统工程平台,作为广泛分布的设计和工程团队分析和传达其各种导弹系统的软件、机械和电气要求的一种手段。使用仿真和可执行建模,这些工程师和设计师现在能够定义、测试和验证每个导弹系统的所有复杂要求,使他们能够在开发阶段更早地纠正错误并加速整个开发生命周期。现在,每个开发阶段都已记录在案,每个设计团队都可以访问,从而缩短了上市时间,消除了冗余并降低了开发成本。
摘要。基于模型的系统工程 (MBSE) 和产品生命周期管理 (PLM) 的最新发展在航空工业的发展中发挥着作用。尽管该领域不愿意接受在生产过程中引入技术飞跃(主要是出于安全原因),但飞机制造商正在慢慢转向新的数字工厂概念。可以利用具有生态设计标准的飞机地面功能测试 PLM 工具的部署来提高装配线的可持续性和端到端地面系统测试过程的效率,但是,异构数据互操作性是该框架的主要挑战之一。本文提出的基于本体的解决方案解决了这一挑战,从而展示了如何利用语义来简化整个 PLM 数字平台的数据管道。
协作并非火箭科学;它只不过是确保每个人都使用相同的信息。然而,正如这家国防承包商的火箭科学家所证实的那样,协作至关重要。导弹开发商部署了一个基于模型的系统工程平台,作为广泛分布的设计和工程团队分析和传达其各种导弹系统的软件、机械和电气要求的一种手段。使用仿真和可执行建模,这些工程师和设计师现在能够定义、测试和验证每个导弹系统的所有复杂要求,使他们能够在开发阶段更早地纠正错误并加速整个开发生命周期。现在,每个开发阶段都已记录在案,每个设计团队都可以访问,从而缩短了上市时间,消除了冗余并降低了开发成本。
Aditya Akundi是德克萨斯州里奥格兰德山谷(UTRGV)大学信息学和工程系统系的助理教授。Akundi博士于2016年在El Paso(UTEP)的德克萨斯大学获得Hisphdat。 在他的博士学位论文中,他研究了信息理论的使用来理解和评估复杂的社会技术系统。 在加入UTRGV之前,他曾在UTEP担任工业制造业和系统工程系的研究助理教授,为期三年,从2016年到2019年。。 Akundi博士在系统建模,系统测试,评估Incose手册,基于模型的系统工程和工程教育领域发表了几篇论文。 他的研究已获得国家科学基金会(NSF)的资金,目前是Utrgv.的I-Dream4D国防部(D0D)研究员,他是Incose和Asee的成员。 他于2017年和2018年获得了ASEE制造部门的未杰出初级教师奖,目前是ASEE制造部的计划主席。Akundi博士于2016年在El Paso(UTEP)的德克萨斯大学获得Hisphdat。在他的博士学位论文中,他研究了信息理论的使用来理解和评估复杂的社会技术系统。在加入UTRGV之前,他曾在UTEP担任工业制造业和系统工程系的研究助理教授,为期三年,从2016年到2019年。Akundi博士在系统建模,系统测试,评估Incose手册,基于模型的系统工程和工程教育领域发表了几篇论文。他的研究已获得国家科学基金会(NSF)的资金,目前是Utrgv.的I-Dream4D国防部(D0D)研究员,他是Incose和Asee的成员。他于2017年和2018年获得了ASEE制造部门的未杰出初级教师奖,目前是ASEE制造部的计划主席。
摘要:飞机工业系统的开发是一个复杂的过程,由于不同数字工具之间的各种接口,面临着多学科工程中数字不连续性的挑战,从而导致额外的开发时间和成本。本文提出了一种基于本体的系统,旨在通过制造模型方法原理实现功能集成和设计过程自动化。在实际案例研究中启用并演示了具有离散事件仿真和 3D 仿真的工具无关建模、仿真和验证平台。收集领域知识的本体层可以集成所提出的系统,加速设计过程并提高设计质量。关键词:本体,基于本体的系统,飞机装配,基于模型的系统工程,需求管理,制造模型
以其 3D 产品生命周期管理 (PLM) 解决方案为标志。波音公司采用了这些元素,并与达索系统公司进一步开发,以创建一个支持整个 787 项目的全方位软件程序。达索系统公司航空航天和国防副总裁 Mich Tellier 开始说道:“实际上,我们创建的是我们今天所说的基于模型的系统工程 (MBSE)。这意味着将许多系统工程流程(例如设计和结构开发)集成到全数字制造、物流、制造和车间跟踪中,甚至集成到飞机维护和支持包的开发中。“另一个元素是使用我们所谓的‘关系设计’来增强它,这意味着设计和工程是可变形的。如果你
摘要 复杂的信息物理系统必须建立在数字蓝图之上,该蓝图通过联合来自多个企业存储库的工程模型的信息来提供最准确的系统表示。该蓝图将作为系统的数字替代品,并随着实际系统在其生命周期(从概念和设计到生产和运营)的成熟而发展。本文介绍了一种基于图形的方法来实现数字蓝图,我们将其称为“总系统模型”。本文分为五个部分。第 1 部分介绍了基于模型的系统工程用例。第 2 部分介绍了“总系统模型”的图形概念。第 3 部分使用 Syndeia 软件作为代表性应用程序演示了基于图形的方法。第 4 部分总结了本文,第 5 部分列出了未来工作的潜在方向。