鱼类遗传资源 (FGR) 在粮食安全、营养和生计方面发挥着至关重要的作用。根据联合国 2030 年可持续发展目标,捕捞渔业和水产养殖是鱼类遗传资源的重要组成部分,必须在满足营养安全和实现可持续发展方面发挥重要作用。为此,迫切需要将农业生物多样性纳入主流,包括其特性、保护和可持续利用。由于捕捞渔业产量增加有限,水产养殖是满足不断增长的人口需求的下一个最佳选择。鱼类遗传资源提供了多样性,可以提高驯化物种的生产,并为水产养殖多样化提供了新物种。它还支持该国的外汇,包括海产品出口以及观赏鱼贸易。传统上,渔业的遗传改良是通过选择性育种计划实现的,然而,随着现代基因组工具的进步,现在可以以以前无法想象的方式解决生物学问题或改变表型。基因组学在渔业中的应用导致了基因的生物勘探和等位基因挖掘的大幅增长,从而发现了几个新的基因和等位基因,它们可能在提高产量和规划保护策略方面发挥潜在作用。本文重点介绍了印度鱼类基因组研究的一些进展以及未来的前景。
摘要 在过去的几十年中,全基因组关联研究 (GWAS) 导致与人类特征和疾病有关的遗传变异急剧增加。这些进展有望带来新的药物靶点,但从 GWAS 中识别致病基因和人类疾病背后的细胞生物学仍然具有挑战性。在这里,我们回顾了基于蛋白质相互作用网络的 GWAS 数据分析方法。这些方法可以在没有直接遗传支持的情况下对 GWAS 相关位点或疾病基因相互作用因子中的候选药物靶点进行排序。这些方法可以识别出不同疾病中共同受影响的细胞生物学,为药物重新利用提供机会,也可以与表达数据相结合以识别局部组织和细胞类型。展望未来,我们预计这些方法将随着特定情境相互作用网络表征和罕见与常见遗传信号的联合分析方面的进展而得到进一步改进。
©2024 Corteva Agriscienciencienciencience B.V ..保留所有权利。本文档受版权法和《艺术》的保护。2001/18指令的25。 本文件和材料仅供当局使用,目的是由Corteva Agriscience Belgium B.V.(Corteva Agriscience Group of Companies),其分支机构或其被许可人提交,并且仅在Corteva Agriencience Bergium B.V.2001/18指令的25。本文件和材料仅供当局使用,目的是由Corteva Agriscience Belgium B.V.(Corteva Agriscience Group of Companies),其分支机构或其被许可人提交,并且仅在Corteva Agriencience Bergium B.V.本文档中描述或随附的知识产权,信息和材料是Corteva Agrisciencience Belgium B.V ..的专有,通过提交本文件,Corteva Agrisciencience比利时B.V.不授予本文档中描述的信息或知识产权的任何一方或实体。
昆虫是了解宿主-病原体相互作用和先天免疫机制的既定模型。昆虫的先天免疫系统在识别和抵抗感染期间造成有害影响的病原体方面非常有效。覆盖昆虫身体表层的角质层通过诱导先天免疫反应参与宿主防御和伤口愈合。先前的研究已经开始探讨角质层基因在赋予对昆虫病原体的抗性方面的作用,特别是那些通过破坏昆虫角质层进行感染的病原体。例如,果蝇的角质层基因转谷氨酰胺酶 (TG) 在角质层形成和血液凝固中起结构性作用,还具有抗病原体感染的免疫特性。然而,关于昆虫其他角质层基因家族的免疫功能的信息越来越多。在这篇综述中,我们旨在强调昆虫角质层免疫的最新进展,并讨论进一步研究的必要性,以填补这一重要昆虫免疫学领域的现有空白。这些信息将带来有效管理农业害虫以及植物和人类疾病媒介的新策略。
通过诱变................................................................................................................................ 11
○ 哪些基因编码了红细胞镰状化?○ CRISPR-Cas9 在原核生物(如细菌)中的自然机制是什么,它是如何被修改并用于编辑真核生物(有细胞核的生物)中的基因的?○ CRISPR 基因编辑技术如何应用于镰状细胞病患者?
快速循环繁殖使用转基因早期流动植物,作为杂种父母,促进了多年生作物的繁殖繁殖计划的缩短。使用表达银桦树的BPMADS4基因的转基因基因型T1190建立了苹果的快速周期育种。在这项研究中,T1190及其非转基因的野生型引脚(F1-Offspring'pinova'和'iDared'的F1-OffSpring通过Illumina短阅读测序在两个单独的实验中进行了测序,导致T1190和167×PIS的平均测序深度为182×。测序显示8,450次读取,其中包含≥20bp的序列与植物转化载体相同。这些读数被组装成125个重叠群,检查了它们是否包含转基因插入或不使用五步程序。一个重叠群的序列表示T1190染色体4上已知的T-DNA插入。其余重叠群的序列在T1190和销钉中同样存在,它们具有与载体序列身份的部分同样存在于Apple参考基因组中,或者它们似乎是由内生污染而不是其他转基因插入的。因此,我们得出的结论是,转基因苹果植物T1190仅包含一个位于4号染色体上的转基因插入,并且没有进一步的部分插入转换载体。
印度农业研究理事会 (ICAR) 下属的国家植物生物技术研究所 (ICAR-NIPB) 是印度农业研究理事会 (ICAR) 下属的一家顶级研究机构。该研究所成立于 1985 年,最初名为印度农业研究所 (IARI) 的“生物技术中心”,旨在设计和利用分子生物学工具和技术进行农业研究。对生物技术在农业中的作用的预见使该中心声名鹊起,并于 1993 年升格为国家植物生物技术研究中心,2019 年升格为国家植物生物技术研究所 (NIPB)。国家植物生物技术研究所负责开发新工具和技术,并在植物生物技术领域取得突破,以改良作物。NIPB 的职责之一是培养植物生物技术领域的人力资源。
1型糖尿病(T1D)是一种复杂的代谢自身免疫性疾病,会影响全球数百万个个体,并且通常会导致显着的合并症。然而,自身免疫和疾病发作的精确触发因素仍未完全阐明。本综合观点文章综合了基因环境相互作用在T1D病理生理学中的累积作用。遗传学在T1D易感性中起着显着的作用,特别是在主要的组织相容性复合物(MHC)基因座和组织蛋白酶H(CTSH)基因座。除了遗传学外,环境因素(例如病毒感染,农药暴露和肠道微生物组的变化)与T1D的发展有关。肠道微生物组的改变会影响粘膜完整性和免疫耐受性,从而通过分子模仿和调节肠道免疫系统来增加肠道渗透性,从而通过自身免疫性诱导增加T1D的风险。HLA II类单倍型对T1D发病率有已知作用可能与肠道微生物组的变化直接相关,但恰恰是肠道微生物组的影响如何变化,以及这些变化如何引起T1D需要进一步研究。假设这些基因环境相互作用通过表观遗传学变化(例如DNA甲基化和组蛋白修饰)提高对T1D的敏感性,从而依次改变了基因表达。有必要确定针对这些表观遗传修饰的新干预措施的有效性,例如“ Epidrugs”,这将为T1D有效管理提供新的途径,从而改善受影响的个体的生活质量及其家人及其家人/护理人员。
i抽象的基因修饰的生物(GMO)和农业贸易:对加勒比海米歇尔·辛西娅·辛西娅·约翰生物技术的前景和影响是一种关键技术,可以通过积极影响农业生产来在全球范围内增强食品和营养安全。本文研究了遗传修饰对全球农业政治经济学的影响,并试图将加勒比海置于此框架之内。“基因革命”体现了该地区发展其农业技术部门的挑战和机会。但是,评估生物技术在解决食品和营养不安全方面的作用必须超越完全接受或拒绝,并权衡其收益和风险。这代表了论文中所采取的概念立场,并在“生物变革主义”的角度举例说明了。一种国际政治经济学方法旨在突出该行业成功所需的生物技术发展的关键结构,特别是安全,生产,财务和知识。它也带来了影响从传统全球劳动分工产生的发展中国家的问题。加勒比海地区在每个结构中都占据外围地位,但可以为在安全性(生物安全)和金融(商业项目)方面所取得的进步而值得称赞。生产的边缘性归因于没有商业生产,而普遍缺乏对转基因生物的认识是知识结构中的主要赤字。研究发现,生物技术在加勒比农业中具有作用,但这取决于该地区改善其在上述每个结构中的地位。相关立法,能力建设,适当的基础设施,研发资金,私营部门的参与,公共教育和政府对该部门的支持都是成功的先决条件。此外,必须考虑替代生产系统,以解决与遗传修饰在粮食生产中的应用有关的问题。
