。CC-BY-NC-ND 4.0 国际许可证 它是永久可用的。 是作者/资助者,已授予 medRxiv 许可以显示预印本(未经同行评审认证)预印本 此版本的版权所有者于 2025 年 2 月 2 日发布。;https://doi.org/10.1101/2025.01.30.25321073 doi:medRxiv 预印本
是作者/资助者,他已授予Medrxiv的许可证,以永久显示预印本。(未通过同行评审证明)预先印刷此版本的版权持有人于2024年11月13日发布。 https://doi.org/10.1101/2024.11.13.24317257 doi:medrxiv preprint
此外,表观基因组关联研究 (EWAS) 等功能基因组学方法提供了有关环境因素如何与遗传倾向相互作用以影响精神疾病的见解。表观遗传修饰,包括 DNA 甲基化和组蛋白修饰,可以改变基因表达而不改变底层 DNA 序列。通过在精神疾病的背景下研究这些修饰,研究人员可以探索环境暴露(如压力或创伤)如何导致疾病风险和进展。例如,在患有重度抑郁症的个体中观察到 DNA 甲基化模式的变化,这可能将环境压力源与与该疾病相关的基因表达变化联系起来。
我们采用了三种方法来定位抗黄锈病基因 Yr7,并确定小麦中相关的 SNP。首先,我们使用传统的 QTL 定位方法,即双单倍体 (DH) 群体,并将 Yr7 定位到 2B 染色体的低重组区域。为了精细定位 QTL,我们使用了关联定位面板。两个群体都进行了 SNP 阵列基因分型,允许根据常见的分离 SNP 进行 QTL 比对和全基因组关联扫描。对跨越 QTL 间隔的关联面板进行分析,将间隔缩小到单个单倍型块。最后,我们使用对抗性和易感性 DH 群体进行测序定位,以识别间隔中与之前建议的 Yr7 候选基因具有高同源性的候选基因,并以更高的多态性密度填充 Yr7 间隔。我们强调了将测序映射结合起来的强大功能,它提供了区间内基于基因的分离多态性的完整列表,并具有关联映射面板的高重组、低 LD 精度。我们的测序映射方法适用于任何性状,我们的结果验证了该方法在小麦中的有效性,在小麦中,通过近乎完整的参考基因组序列,我们能够定义一个包含致病基因的小区间。
目的:全基因组关联研究 (GWAS) 已成功揭示了许多肥胖易感位点。然而,确定导致这些关联的致病基因、通路和组织/细胞类型仍然是一项挑战,而且缺乏标准化的分析工作流程。此外,由于肥胖的治疗选择有限,需要开发新的药物疗法。本研究旨在通过逐步利用知识库进行基因优先排序并评估关键肥胖基因作为治疗靶点的潜在相关性来解决这些问题。方法和结果:首先,我们从公开的 GWAS 数据集(GIANT 荟萃分析中约有 800,000 人)中生成了 28,787 个肥胖相关 SNP 列表。然后,我们根据基因组和转录组数据(包括来自转录组范围关联研究的大脑中的转录调控基因)优先考虑了 1372 个具有显著计算机证据的基因。在进一步缩小基因列表的过程中,我们选择了关键基因,我们发现这些基因对于发现潜在的药物种子很有用,这在脂质 GWAS 中得到了单独证明。因此,我们确定了 74 个肥胖的关键基因,这些基因高度相互关联,并在导致肥胖的几种生物过程中富集,包括能量消耗和体内平衡。在 74 个关键基因中,有 37 个尚未被报道与肥胖的病理生理有关。最后,通过药物-基因相互作用分析,我们发现了 23 个(共 74 个)关键基因,它们是 78 种已获批准和上市药物的潜在靶点。结论:我们的研究结果通过整合多个最新知识库的数据驱动方法为肥胖的新治疗方案提供了宝贵的见解。
多环芳烃 (PAH) 和二恶英类化合物(包括硫、氮和氧杂环)是广泛存在的有毒环境污染物。能够与芳香族多环化合物一起生长的多种微生物对于污染场地的生物修复和地球的碳循环至关重要。在这里,在联苯 (BP) 存在下生长的假单胞菌 B6-2 (ATCC BAA- 2545) 细胞能够同时降解 PAH 及其衍生物,即使它们以混合物的形式存在,并且能够耐受高浓度的剧毒溶剂。对菌株 B6-2 的 6.37 Mb 基因组的遗传分析揭示了负责芳香族化合物中央分解代谢系统和溶剂耐受性的基因簇共存。我们利用功能转录组学和蛋白质组学来识别与 BP 以及 BP、二苯并呋喃、二苯并噻吩和咔唑混合物的分解代谢相关的候选基因。此外,我们观察到 BP 在转录水平上的动态变化,包括芳香化合物的代谢途径、趋化性、流出泵和转运蛋白,这些可能与适应 PAH 有关。这项关于菌株 B6-2 高度多功能活性的研究表明,它
免疫耐受性的丧失会导致自身免疫性疾病,而维持自身耐受性的机制(尤其是在人类中)尚不完全清楚。全基因组关联研究 (GWAS) 已确定数百个与自身免疫性疾病风险有统计学相关性的人类基因位点,这些位点的 DNA 和染色质表观遗传修饰与自身免疫性疾病风险相关。由于这些信号绝大多数位于远离基因的位置,因此识别致病变异及其对正确效应基因的功能性影响一直颇具挑战性。这些限制阻碍了将 GWAS 发现转化为新的药物靶点和临床干预措施,但最近在理解细胞核中基因组的空间组织方面取得的进展为基因调控提供了机制见解,并解答了 GWAS 留下的问题。在这里,我们讨论了“变异到基因映射”方法的潜力,该方法将 GWAS 与 3D 功能基因组数据相结合,以识别参与维持耐受性的人类基因。
我们采用了三种方法来定位抗黄锈病基因 Yr7 并识别小麦中的相关 SNP。首先,我们使用传统的 QTL 定位方法,即使用双单倍体 (DH) 群体,并将 Yr7 定位到 2B 染色体的低重组区域。为了精细定位 QTL,我们使用了关联定位面板。两个群体都进行了 SNP 阵列基因分型,允许根据常见的分离 SNP 进行 QTL 比对和全基因组关联扫描。对跨越 QTL 间隔的关联面板进行分析,将间隔缩小到单个单倍型块。最后,我们使用对抗性和易感性 DH 群体进行测序定位,以识别间隔中与之前建议的 Yr7 候选基因具有高同源性的候选基因,并以更高的多态性密度填充 Yr7 间隔。我们强调了将测序映射结合起来的强大功能,它提供了区间内基于基因的分离多态性的完整列表,并具有关联映射面板的高重组、低 LD 精度。我们的测序映射方法适用于任何性状,我们的结果验证了该方法在小麦中的有效性,在小麦中,通过近乎完整的参考基因组序列,我们能够定义一个包含致病基因的小区间。