oenococcus oeni是酿酒中的重要工程微生物。详细了解其在恶劣的葡萄酒环境中其生长和代谢的知识可能有助于繁殖精英o. oeni品种。然而,由于缺乏稳定且可重复的技术来对O. oeni进行基因操纵,因此对该主题的进一步研究似乎无法持续。因此,这项研究旨在通过探索一种新适用的转化技术来研究基因功能,该技术可以在O. oeni上稳定且可重复地性能。通过将基因枪技术与爆炸纳米座符作为质粒DNA载体,我们在O. oeni中实现了稳定且可重复的质粒DNA转化。此外,具有氯霉素耐药基因的质粒使O. oeni sx-1b在氯霉素培养基中繁殖。
摘要:基因枪转染是一种流行且用途广泛的植物转化工具。基因枪过程中的一个关键步骤是使用递送剂将 DNA 与重微粒结合,递送剂通常是带正电的含有胺基的分子。目前,商业递送剂的选择大多局限于亚精胺。此外,尚未报道详细的递送机制。为了帮助扩大递送剂的选择范围并揭示导致高递送性能的基本机制,研究了一个含胺分子库。使用双管基因枪递送装置测试了数百个样品,一致性大大提高。在洋葱表皮上评估了性能。通过直接高效液相色谱分析测量了 DNA 的结合和释放。这项研究表明,绝大多数胺库的表现与亚精胺相同。为了进一步解释这些结果,对化学建模生成的数千个分子描述符进行了关联分析。结果发现,总电荷很可能是成功结合和递送的关键因素。此外,即使将 DNA 浓度增加 50 倍以强调分子的结合能力,文库中的胺类仍继续以几乎相同的水平进行传递,同时结合所有 DNA。需要传递大量 DNA 的 Cas9 编辑测试也证明了 DNA 的增加,结果与之前确定的胺类性能一致。这项研究大大扩展了基因枪传递的传递剂选择,允许使用更耐储存且更便宜的商业试剂替代品。该文库还提供了一种方法,用于研究未来通过基因枪过程进行更具挑战性的蛋白质和 CRISPR-Cas 传递。关键词:DNA 传递、DNA - 粒子沉淀、基因编辑、基因枪、粒子轰击、QSAR
图 2 用于对光合微生物进行遗传工程改造的常见遗传转化技术示意图。 (A) 对于绿藻 (衣藻) 和真气藻 (微绿球藻):电穿孔和基因枪轰击可用于衣藻和微绿球藻的叶绿体靶向转化,而电穿孔或用玻璃珠涡旋可用于修饰衣藻的核基因组。细菌接合或农杆菌介导的转移也可用于将 DNA 引入这些细胞。 (B) 对于蓝藻:自然转化或接合可用于转移 DNA 以整合到染色体中或作为复制质粒。质粒也可以通过电穿孔转移。 (C) 对于硅藻:电穿孔和细菌接合是可用于将 DNA 引入硅藻的技术的例子。也可以使用农杆菌介导的转移或基因枪轰击
摘要 利用 CRISPR/Cas9 进行基因组编辑对普通小麦非常有用,因为普通小麦具有异源六倍体的特性,并且可以同时在三个同源基因中诱发突变。虽然农杆菌介导的转化在基因组编辑方面具有优势,但它在小麦中仍然效率低下且需要相对较长的时间。因此,使用具有高效体内诱变功能的向导 RNA (gRNA) 是在短时间内产生基因组编辑突变系的关键因素之一。在本研究中,我们针对普通小麦中的三个基因,建立了一种快速检测由基因枪瞬时表达系统诱导的突变的方法。在未成熟的小麦胚中实现了 gRNA 和 Cas9 的基因枪瞬时表达。一周后使用 PCR-RFLP 检测到突变,并通过基因组克隆测序进行验证。我们确认了几种类型的突变,这些突变的发生率取决于靶序列。此外,在农杆菌转化的植物中,以较高速率编辑的靶标处的突变频率往往更高。这些结果表明,这种快速检测编辑突变的方法可用于多种应用,例如筛选目标序列或修饰载体以实现小麦中有效的 CRISPR/Cas9 基因组编辑。
摘要:维生素 A 缺乏症是一个全球性的健康问题,对发展中国家的人们影响尤为严重。它会导致严重的健康问题,例如免疫系统虚弱和视力受损。转基因技术已成为解决这一问题的一种可能方法,通过增加大米、玉米和土豆等主食作物中的 β-胡萝卜素含量。大米、玉米和土豆是全球重要的主食作物,但缺乏维生素 A 等必需营养素。因此,科学家已成功地利用各种基因工程技术(如 CRISPR-Cas 基因编辑、基因枪转化和农杆菌介导的转化)将增强 β-胡萝卜素所需的基因插入这些作物中,从而为维生素 A 缺乏和营养不良提供了解决方案。
摘要 大豆种子性状的遗传改良对于开发满足大豆作为食品、饲料作物和工业产品需求的新品种非常重要。目前,大量大豆基因组序列可供公众获取。这些基因组序列信息为设计基因组方法来改善大豆性状提供了重要机会。基因组编辑代表了生物技术的重大进步。通过基因组编辑产生大豆突变体通常是通过农杆菌介导或基因枪转化平台实现的,这些平台已针对各种大豆基因型进行了优化。目前,成簇的规律间隔短回文重复序列 (CRISPR)/CRISPR 相关核酸内切酶 9 (Cas9) 系统代表了基因组编辑的重大进步,用于改善大豆的性状,例如脂肪酸组成、蛋白质含量和组成、风味、消化率、大小和种皮颜色。在这篇综述中,我们总结了通过基因组编辑改善大豆种子性状的最新进展。我们还讨论了使用CRISPR/Cas9系统和转化平台进行基因组编辑的特点。
作物。对 87 种芒属植物基因型的初步筛选确定了胚性愈伤组织形成和再生的显著差异,而另一子集则显示出通过农杆菌或基因枪转化的能力差异——所有这些因素都可能影响基因编辑效率。针对五种基因型开发了优化程序,其中包括一种 Msi (2x)、两种 Msa (2x 和 4x) 和一种 Mxg (3x)。设计了一种多步骤筛选方法来设计能够成功靶向基因同源物的 gRNA,有利于靶向古异源多倍体芒属植物中的基因。在玉米中靶向以通过 CRISPR/Cas9 产生突变体的视觉标记基因 lw1 [36, 37, 38] 被选为芒属植物的靶向基因。编辑后的 lw1 中的叶子表型(淡绿色/黄色、条纹、白色)是一个引人注目的视觉标记
基于 CRISPR/Cas 的基因组编辑技术有可能加快大规模作物育种计划。然而,坚硬的细胞壁限制了 CRISPR/Cas 成分进入植物细胞,从而降低了基因组编辑效率。已建立的方法,例如农杆菌介导或基因枪转化,已用于将含有 CRISPR 成分的基因盒整合到植物基因组中。这些方法虽然有效,但也存在几个问题,包括 1) 转化过程需要费力且耗时的组织培养和再生步骤;2) 许多作物物种和优良品种难以转化;3) 在无性繁殖或高度杂合的作物(如菠萝)中,转基因的分离要么困难要么不可能;4) 生产转基因第一代可能引起公众争议和繁重的政府监管。无转基因基因组编辑技术的发展可以解决许多与转基因方法相关的问题。无转基因基因组编辑已通过递送预组装的 CRISPR/Cas 核糖核蛋白实现,尽管其应用有限。使用病毒载体递送 CRISPR/Cas 成分最近已成为一种强有力的替代方法,但需要进一步探索。在这篇综述中,我们讨论了无转基因基因组编辑方法的不同策略、原理、应用和未来方向。
摘要:高效的基因传递系统对于植物基因工程至关重要。传统的传递方法已被广泛使用,例如农杆菌介导的转化、聚乙二醇 (PEG) 介导的传递、基因枪轰击和病毒转染。然而,这些技术的基因型依赖性和其他缺点限制了基因工程的应用,特别是许多农作物的基因组编辑。迫切需要开发新的基因传递载体或方法。最近,纳米材料如介孔二氧化硅颗粒 (MSN)、AuNP、碳纳米管 (CNT) 和层状双氢氧化物 (LDH) 已成为将基因组工程工具 (DNA、RNA、蛋白质和 RNP) 高效地以物种独立的方式传递给植物的有前途的载体。已经报道了一些令人兴奋的结果,例如成功将货物基因传递到植物中以及产生基因组稳定的转基因棉花和玉米植物,这为植物基因组工程提供了一些新的常规方法。因此,本文综述了纳米材料在植物遗传转化中的应用进展,并讨论了不同方法的优势和局限性,强调了纳米材料在植物基因组编辑中的优势和潜在的广泛应用,为纳米材料在植物基因工程和作物育种中的应用提供指导。
基因组编辑技术为多年生黑麦草(一种全球重要的牧草和草坪草种)的遗传改良提供了强有力的工具。关于多年生黑麦草基因编辑的唯一出版物使用基因枪进行植物转化,并使用基于双启动子的 CRISPR/Cas9 系统进行编辑。然而,它们的编辑效率很低(5.9% 或只产生了一株基因编辑植物)。为了测试玉米泛素 1 (ZmUbi1) 启动子在多年生黑麦草基因编辑中的适用性,我们制作了 ZmUbi1 启动子:RUBY 转基因植物。我们观察到 ZmUbi1 启动子在芽再生之前的愈伤组织中活跃,这表明该启动子适用于多年生黑麦草中的 Cas9 和 sgRNA 表达,以高效生产双等位基因突变植物。然后,我们使用 ZmUbi1 启动子来控制多年生黑麦草中的 Cas9 和 sgRNA 表达。Cas9 和 sgRNA 序列之间的核酶切割靶位点允许在转录后产生功能性 Cas9 mRNA 和 sgRNA。使用农杆菌进行遗传转化,我们观察到在多年生黑麦草中编辑 PHYTOENE DESATURASE 基因的效率为 29%。DNA 测序分析表明,大多数 pds 植物含有双等位基因突变。这些结果表明,由 ZmUbi1 启动子控制的单个 Cas9 和 sgRNA 转录单元的表达为产生多年生黑麦草的双等位基因突变体提供了一种高效的系统,并且也适用于其他相关草种。