Maiaspina 冰川是兰格尔-圣伊莱亚斯国家公园和保护区内最大的冰川(图 1)。该冰川面积超过 2,650 平方公里。被复杂的褶皱冰碛系统覆盖,这是 Ma&pin& 支流之间的流入速率和体积差异的结果。在其下游,冰川形成一个宽阔的球状。缓坡的山麓叶。该叶面积超过 1,500 平方公里,是美国地质调查局 (USGS) 正在进行调查的地点。将现场观察和测量与数字遥感数据的实验室分析相结合。尽管美国地质调查局自 19 世纪中叶以来就一直积极调查马拉斯皮纳冰川及其周边地区,但拉塞尔于 19 世纪 80 年代发明了这种冰川,而美国地质调查局于 1986 年 11 月获得了 Malasptna 冰川的数字侧视机载雷达 (SLAR) 数据(图 ZJ),从而促成了本研究。调查有两个主题:(1) 使用雷达遥感提供有关 Malaspina 冰川下基岩特征以及基岩与冰川表面特征关系的信息,以及 (2) 使用雷达提供有关冰川历史的信息。续第 3 页图 1。地图显示了 Wrangeli-Sr. Elias Natronai 公园和保护区内 Maiaspjna 冰川的位置
F. 南卡罗来纳州的大多数地震都发生在沿海平原。地表深处的岩石因盘古大陆的分裂而断裂。该地区的板块较弱,岩石上的压力会导致地震活动。因此,由于地下地质条件,地震发生的频率较低,但地震在更大范围内更为剧烈。三县沿海地区主要由沙子、淤泥、基岩、沉积物和土壤组成,增加了
迈阿斯皮纳冰川是兰格尔-圣伊莱亚斯国家公园和保护区内最大的冰川(图 1)。该冰川面积超过 2,650 平方公里,被复杂的褶皱冰碛系统覆盖,这是由于迈阿斯皮纳支流之间的流入速率和体积差异造成的。在其下游,冰川形成了一个宽阔的球状、缓坡的山麓叶。该叶面积超过 1,500 平方公里,是美国地质调查局 (USGS) 正在进行调查的地点,调查结合了实地观察和测量以及数字遥感数据的实验室分析。尽管美国地质调查局自 19 世纪 80 年代 1C Russell 以来就一直积极调查马拉斯皮纳冰川及其周边地区,但直到 1986 年 11 月,美国地质调查局才获得了马拉斯皮纳冰川的数字侧视机载雷达 (SLAR) 数据(图 ZJ),从而促成了本研究。调查有两个主题:(1)使用雷达遥感提供有关马拉斯皮纳冰川底层基岩特征以及基岩与冰川表面特征关系的信息,以及(2)使用雷达提供有关冰川历史的信息。续第 3 页图 1. 地图显示 Wrangeli-Sr. Elias Natronai 公园和保护区内 Maiaspjna 冰川的位置
这不仅是因为氡会释放到室内空气中,还因为氡及其子体在人体摄入时会造成辐射剂量。虽然只有有限数量的国家已经实施了有关水中氡含量的法规,但更多的国家正在考虑这样做。瑞典当局提出的强制限值是公共水源的氡含量不得超过 100 Bq/1,而私人水井的水不得超过 1000 Bq/1。此外,建议不要给五岁以下儿童饮用氡含量超过 500 Bq/1 的水。在瑞典,氡含量超过 1000 Bq/1 的水井数量估计超过 10,000 口,其中相当一部分超过了 10,000 Bq/1。迄今为止遇到的饮用水井中氡浓度最高为 57,000 Bq/1。氡气含量超过 500 Bq/1 的几乎全部出现在钻入基岩的井和含有山间水的泉水中。地下水氡气含量升高需要水流经铀浓度升高的基岩,或流经覆盖有含高浓度镭-226 矿物的裂缝。来自含铀岩石类型(例如富铀花岗岩、伟晶岩和硬壳岩)地区的山间水通常表现出氡气含量升高。强制氡气限值的实施导致社会要求提供有关地下水氡气风险的区域信息。建立风险地图的常规做法,重点关注
摘要。在过去80万年的冰川周期中,欧亚大陆和北美被大型冰盖覆盖,导致高达100 m的海平面变化。虽然晚更新世冰川周期通常持续80 000 - 112万年,但终止阶段仅在10 000年内完成。在这些冰川终止期间,北美和欧亚冰盖撤退了,在冰片边缘前造成了大型的前冰湖。沿冰期湖泊在北美和欧亚冰盖的南部边缘的冰架上促进冰架上加速冰川。这些冰架的特征是基础熔化,低表面高程和底座上可忽略不计的摩擦。在这里,我们使用冰片模型来量化前后湖泊对晚期更新世冰川终止的(组合)影响,通过检查其与冰川等静态调节(GIA)和基础滑动的相互作用。我们发现,冰期湖泊的加速冰盖的脱气主要是因为冰架下没有基部摩擦。如果将接地冰下的摩擦施加到冰冰上,则全脱裂料会被几千年推迟,从而导致冰期冰期剩余的冰,没有形成广泛的冰架。此外,湖泊冰架下熔体速率的巨大不确定性转化为终止终止的不确定性。冰期湖是由冰盖撤退后留下的陆地上的凹陷而产生的。这是 -前进湖泊的深度,大小和时机取决于基岩反弹的速度。我们发现,如果基岩在几个世纪内反弹(而不是几千年),则冰盖的质量损失率将大大降低。
6.0 项目描述 ADM 将从其燃料乙醇生产装置中捕获二氧化碳气体,并将该气体压缩成密相液体,注入地表以下约 7,000 英尺的西蒙山砂岩中。注入区上方是寒武纪欧克莱尔地层,该地层起密封作用,下方是前寒武纪花岗岩基底(图 2)。西蒙山的下部是主要目标储层,是最初沉积在辫状河冲积扇系统中的长石砂岩。CCS#2 注入点最下方的 USDW 是宾夕法尼亚基岩。
自然语言处理(NLP)用于大语言模型(LLM)的抽象应用继续随着域生成AI(Genai)的技术进步而继续发展。数据的巨大爆炸,可扩展的计算能力和机器学习创新的可用性,LLM,都导致生成AI(Genai)变得越来越流行。基本模型LLM涉及的主要挑战是它们幻觉的趋势。LLMS中的幻觉是指不一致的不一致的输出,有时是不正确的信息或响应。这是因为大多数LLM经过大量通用数据训练,并且必须使用特定于域和外部数据来增强用于Genai任务,例如聊天机器人,问答,摘要和文本生成。为了应对幻觉的挑战,本研究将以PDF文件的形式利用特定领域的医疗保健数据以及FM来创建检索增强生成(RAG)Chatbot。本研究利用了亚马逊基岩的基础基础模型,Llama 2。我们的特定领域的医疗保健数据来自相关和可靠的来源。使用Python开发了RAG聊天机器人,并使用Rouge和Meteor,评估自动生成的文本评估指标对响应进行了评估。评估是基于三种情况:响应小于250个字符,超过250个字符以及来自多个LLM的响应。关键字 - LLM,亚马逊基岩,Genai,基础模型,Llama2,幻觉。我们的发现提供了有力的证据,表明具有特定数据的基础模型(FMS)可以提高模型在为患者提供可靠的医学知识时的质量。
•CO 2气体与超镁铁质岩石之间的自然发生化学反应;可以在低温和压力下发生•提供CO 2的长期稳定存储,作为寄主岩石内的碳酸镁矿物质(可能是基岩,废岩或矿山尾矿)•潜在的外坐 - 塞图岩(Serpentiite inde in n of Serpentiite in and Serpentiite)或在Situtu(Co 2 Indroumpt)•超级反应型•在blimand inflimpt上•超级反应型•在blimape infly•超玛达岩石上•超级反应• Greg Dipple,UBC Carbmin Lab- GBC网站上可用的初步报告