由于电解质很难进入纳米多孔还原石墨烯(RGO)电极的纳米构固定空间,因此实现了这些设备的最佳电化学性能是一个挑战。在这项工作中,在电压控制的纳米孔RGO电极的电化学激活过程中研究了界面州现象的动力学,该电化学激活在人体能力和电化学障碍方面导致电化学性能增强。原位/操作表征技术用于揭示激活过程中引入的不可逆材料变化的动力学,包括纳米孔内的离子差异和水的构成,以及含氧组的还原和RGO Interlayer距离的减少。此外,操作技术用于揭示RGO电极的复杂极化依赖性动态响应的起源。研究表明,石墨烯基平面中剩余官能团的可逆质子化/去质子化和阳离子电吸附/解吸过程控制纳米孔RGO电极的假能性能。这项工作为纳米多孔RGO电极的电化学循环过程中发生的表面化学,离子实现和脱染过程之间的复杂相互作用带来了新的了解,从而为设计基于Nanoporor rgo的高强度电极设计了新的见解。
1 斯坦福大学材料科学与工程系 2 斯坦福大学电气工程系,斯坦福大学 3 苏黎世联邦理工学院巴塞尔生物系统科学与工程系 4 斯坦福大学生物工程系 5 斯坦福大学神经外科系 6 斯坦福大学化学工程系 7 斯坦福大学医学院,斯坦福大学 8 斯坦福大学汉森实验物理实验室 通讯作者:Nicholas A. Melosh (nmelosh@stanford.edu) 硅基平面微电子学是一种强大的工具,可用于以高时空分辨率可扩展地记录和调节神经活动,但以三维 (3D) 为目标的神经结构仍然具有挑战性。我们提出了一种在硅微电子学上直接制造组织穿透微电极的 3D 阵列的方法。利用基于双光子聚合和可扩展微加工工艺的高分辨率 3D 打印技术,我们在平面硅基微电极阵列上制作了 6,600 个高 10-130 µm、间距 35 μm 的微电极阵列。该工艺可以定制电极形状、高度和定位,以精确定位 3D 分布的神经元群。作为概念验证,我们解决了在与视网膜交互时专门定位视网膜神经节细胞 (RGC) 胞体的挑战。该阵列经过定制,可插入视网膜并从胞体记录,同时避开轴突层。我们用共聚焦显微镜验证了微电极的位置,并以细胞分辨率记录了高分辨率自发 RGC 活动。与平面微电极阵列的记录不同,这揭示了强大的躯体和树突成分,而轴突贡献很少。该技术可以成为一种多功能解决方案,用于将硅微电子与神经结构连接起来,并以单细胞分辨率大规模调节神经活动。
近年来,大量量子比特(qubit)的制造和集成取得了重大进展,使量子计算机更接近现实,为研究人员、工程师和学生参与新兴的量子计算世界提供了新工具。结合各种可能的硬件平台和量子软件的共同进步,量子信息的远程传输演示正在为量子通信、量子存储器(互联网)和传感领域的革命性技术铺平道路。除了这个已经丰富的领域之外,新一代量子材料有望将拓扑物理与强相关性结合起来。这些材料与量子技术的结合推动了量子技术的前沿发展,并支持开发高能效的计算设备、先进的计量平台和拓扑量子量子比特,作为抗误差量子计算协议的替代方案。然而,开拓一个快速发展的领域意味着没有指南针前进,而 QUANTUMatter 的目的是在已知和未知领域提供方向,以推动进一步的探索而不迷失方向。 QUANTUMatter2023 为期三天,汇聚了来自世界各地(30 个国家)的 420 名参会者,期间除了全体会议外,还举办了重点主题(量子物质、量子信息理论等)的平行研讨会,以及为期一天的工业论坛。论坛由 Quantum Spain 组织举办,Quantum Spain 是一项国家倡议,重点致力于在西班牙发展量子计算生态系统 1 。如图 1 所示,会议吸引了众多参会者,并汇集了量子技术和量子材料领域的主旨演讲者和受邀演讲者的许多非常相关的贡献。会议以 Daniel Loss 教授 (巴塞尔大学,图 2) 关于用于量子计算的半导体自旋量子比特发展领域的精彩演讲开始,之后组织了一系列全体会议,涵盖各种量子比特平台(超导量子比特、可编程原子阵列)和材料(硅和锗基平面异质结构、混合半导体/超导体系统),重点关注它们的大规模集成 2 。会议广泛讨论了优化材料和界面设计以大规模集成高性能量子比特所面临的问题和挑战。讨论强调了这个快速发展的领域吸引具有不同背景和目标的研究人员和公司的缺点,即材料和器件的生长、特性和模拟之间缺乏系统的联系。建立量子技术的关键构件并确定可扩展量子信息处理的最有希望的途径对于加速进一步的进展至关重要。Mikhail Lukin 教授(美国哈佛大学)发表了精彩的全体会议演讲,介绍了利用可编程里德堡原子阵列探索新的科学前沿,包括使用量子优化解决最大独立集问题、强关联分子的量子模拟以及控制许多量子纠缠