执行摘要 声学、超声和振动咨询委员会成立于 1999 年,旨在确保以统一和适当的方式实现和传播与声音和加速度计量相关的数量。尽管 CCAUV 支持的测量单位不是国际单位制 (SI) 的基本单位,但它们与公共安全、健康和国家安全有直接关系。CCAUV 进行关键比较,以支持与空气和水中的声音、超声波和基于正弦和冲击激励的加速度相关的测量。成员实验室还在区域层面进行比较,并通过参与和报告实验室之间的双边比较。CCAUV 在审查当前 CMC 方面没有过多的工作,但计划在未来采用基于风险的评估方法对其进行审查。咨询委员会级关键比对 (CCKC) 的规划过程需要仔细审议,以优化满足利益相关者需求所需的资源需求。一些成熟的关键比对 (KC) 现已达到重复 CCKC(通常以 10 年为周期)的阶段,以对其进行评估并扩大其校准范围。新兴 NMI 正在努力赶上校准能力,但是,其校准能力必须首先得到区域计量组织 (RMO) 的确认。我们的 KC 协议中引用了 IEC 和 ISO 提供的指南文件,供我们的利益相关者和用户遵循。在提出新的 CCKC 之前,CCAUV 的方法是进行试点比较,以审查其可行性、技术协议的充分性以及用于确定参考值的计算过程。由于 CCAUV 的利益相关者多种多样,因此只有在充分遵循经认可和非认可的校准和测试实验室级别的二次校准以及用户级别的测量协议的情况下,才能保证对最终用户的可追溯性。因此,CCAUV 与 IEC 和 ISO 中的相关技术委员会 (TC) 以及职业安全、环境安全、交通当局以及其他需要的监管机构保持密切互动。
执行摘要 声学、超声和振动咨询委员会成立于 1999 年,旨在确保以统一和适当的方式实现和传播与声音和加速度计量相关的数量。尽管 CCAUV 支持的测量单位不是国际单位制 (SI) 的基本单位,但它们与公共安全、健康和国家安全有直接关系。CCAUV 进行关键比较,以支持与空气和水中的声音、超声波和基于正弦和冲击激励的加速度相关的测量。成员实验室还在区域层面进行比较,并通过参与和报告实验室之间的双边比较。CCAUV 在审查当前 CMC 方面没有过多的工作,但计划在未来采用基于风险的评估方法对其进行审查。咨询委员会级关键比对 (CCKC) 的规划过程需要仔细审议,以优化满足利益相关者需求所需的资源需求。一些成熟的关键比对 (KC) 现已达到重复 CCKC(通常以 10 年为周期)的阶段,以对其进行评估并扩大其校准范围。新兴 NMI 正在努力赶上校准能力,但是,其校准能力必须首先得到区域计量组织 (RMO) 的确认。在提出新的 CCKC 之前,CCAUV 的方法是进行试点比较,以审查其可行性、技术协议的充分性以及用于确定参考值的计算过程。由于 CCAUV 的利益相关者多种多样,只有充分遵循经认可和非认可的校准和测试实验室级别的二次校准以及用户级别的测量协议,才能保证对最终用户的可追溯性。我们的 KC 协议中引用了 IEC 和 ISO 提供的指南文件,供我们的利益相关者和用户遵循。因此,CCAUV 与 IEC 和 ISO 中的相关技术委员会 (TC) 以及职业安全、环境安全、交通当局以及其他需要的监管机构保持密切互动。
初步交流 神经网络和机器学习在图像识别中的应用 Dario GALIĆ*、Zvezdan STOJANOVIĆ、Elvir ČAJIĆ 摘要:人工神经网络在各个领域都有广泛的应用,包括复杂的机器人技术、计算机视觉和分类任务。它们旨在模仿人类大脑高度复杂、非线性和并行的计算能力。就像大脑中的神经元一样,人工神经网络可以组织起来执行快速而具体的计算,例如感知和运动控制。从生物神经网络的行为及其学习和自适应能力中汲取灵感,这些技术对应物已被开发出来以模拟生物系统的特性。本文主要集中在两个领域。首先,它探索了使用人工神经网络对健康个体进行图像识别的近似方法。其次,它研究了与影响全球人口的常见肾脏疾病相关的肾脏疾病的识别。具体来说,本文研究了多囊肾病、肾囊肿和肾癌。最终目标是利用机器学习算法通过分析各种样本来帮助诊断肾脏疾病。 关键词:图像识别;医学诊断;神经网络 1 引言 神经网络的灵感来源于信息处理的生物过程,特别是神经系统中观察到的过程,其中基本单位是神经元或神经细胞(如图 1 所示)。神经元是神经组织(包括大脑)的基本功能组成部分。它由细胞体(也称为胞体)组成,细胞核就藏在细胞体里。从细胞体延伸出来的是无数的纤维,称为树突,在细胞周围形成复杂的网络状结构,还有一条细长的纤维,称为轴突。轴突可以延伸很长的距离,通常可达一厘米,在极端情况下甚至可以达到一米。此外,轴突分支成结构和子结构,与其他神经元的树突和细胞体建立连接。神经元之间的这些互连连接点称为突触 [1]。每个神经元都会与其他神经元形成突触,突触的数量从几十到几十万不等。一般来说,当神经元处于静止状态时,它会接收通过树突从其他神经元传输的电化学脉冲形式的信号。
摘要简介:越来越关注如何预防,减速和诱导2型糖尿病(T2DM)的缓解。最近的证据发现饮食和生活方式干预措施可能会导致T2DM的减轻,但是,对于像不列颠巴基斯坦人等不同群体的挑战,他们面临T2DM风险的四倍。有必要了解不同世代群体的食物行为,以制定适当的文化策略来支持预防疾病的预防计划。的目的:本研究探讨了对不列颠巴基斯坦人中与T2DM有关的健康饮食和食品实践的信念,以了解他们在增强健康饮食方面面临的挑战。方法:我们通过电话和面对面进行了26次半结构化定性访谈。样本包括居住在英国布拉德福德(Bradford)的T2DM英属巴基斯坦人,年龄在18至71岁之间,平均年龄为50岁(SD = 17.04)。参与者中有14名女性(54%)和12名男性(46%),访谈的英语(76%)和乌尔都语(24%)。参与者根据年龄(第一代65 +;第二代40-64;年轻一代18-39岁)分组。世代群体之间没有生物学联系,它们不是同一家庭的一部分。使用定性反思性主题分析分析数据。结果:发现结果分为三个主题:知识和糖尿病症状的意识;食物实践的社会和家庭背景,并使健康饮食有意义。家庭是了解与食品有关的健康行为的基本单位。吃传统食物被认为是健康的,对第一代人的最初成员以及在英国定居的最初成员以及父母在巴基斯坦出生的第二代人都被认为是实用的。年轻的不列颠巴基斯坦人出生于英国,报告说他们努力在家中吃其他食物并管理其T2DM。结论:这些发现提高了我们对英国巴基斯坦人与T2DM的三个生成如何协商健康饮食的理解。需要进行文化量身定制的饮食修改和干预措施,其中不同的
量子物理和化学问题。 [1] 为此,世界各地的研究人员正致力于开发量子计算、量子模拟和量子传感。 [2] 这项技术的优势可能有助于解决一些影响深远的问题,如理解高温超导性、进一步实现处理器中晶体管的小型化以及预测新型药物的特性。 [3–5] 量子应用的基本单位是量子比特,一般来说,量子比特是一个具有两个或多个能级的系统,可以在一段有限的时间内进入相干叠加态,这段时间称为相干时间。 [6] 目前正在研究几种作为量子比特的系统,将它们的属性与特定的应用联系起来:用于量子通信的光子,[7] 用于量子计算的超导电路,[8,9] 和用于磁场量子传感的金刚石中的氮空位。 [10,11] 其他有趣的平台包括硅中的磷杂质、[12] 量子点、[13] 里德堡原子 [14] 和捕获离子。[15,16] 所有这些潜在的量子比特平台在作为独立单元工作时都表现出非凡的特性。然而,实现量子门需要将几个这样的单元耦合起来,而这具有挑战性。同样,由于缺乏能够在阵列中精确定位量子比特的制造工艺,它们的可扩展性也受到限制。[17] 必须满足这两个要求才能实现工作的量子装置,因此这是一项不简单的任务。分子自旋量子比特 (MSQ) 是一个很有前途的平台,可以应对这些挑战。[18–23] 分子是微观的量子物体,像原子一样,但其组成更灵活,具有在纳米级形成有序结构的巨大潜力。 [24,25] 由于其合成的多功能性,可以微调多个量子比特之间的相互作用 [26–28] 并修改配体壳以满足特定的实际需求,例如将量子比特转移到固体基底上或设备中。[4,29–32] 人们对 MSQ 的兴趣迅速增长,并在短时间内取得了有关化学设计与量子特性之间关系理解的显著成果。[33–41] 现在很明显,可以实现长的相干时间 [42–45] 并且可以设计多自旋能级系统,这要归功于量子门
摘要 本文讨论了用信息和意识来描述宇宙或自然的优势。理论物理学家在寻求万物理论的过程中遇到的一些问题源于试图仅用物质和能量来理解万物的局限性。然而,如果用信息和意识来描述一切,包括物质、能量、生命和心理过程,那么在寻找宇宙的终极理论方面就会取得很大进展。尽管物理学和化学在过去两个世纪里取得了辉煌的成功,但重要的是不能只用物质和能量来看待自然。要解开她的秘密,还需要两个额外的组成部分。虽然有大量的著作描述了物质和能量之间的联系及其物理基础,但很少有人研究物质、能量、信息和意识之间的特殊关系。关键词意识、数字物理、电子、能量、信息、物质、粒子、关系、弦理论、万物理论。 1. 引言 绝大多数物理学家认为宇宙是由物质构成的,物质又由原子构成,原子由电子、质子和中子等粒子构成,质子和中子由夸克构成。简而言之,我们从物理学和化学中得知,一切都是由物质构成的。显然,大多数科学家认为亚原子粒子是我们宇宙的基础。此外,弦理论告诉我们,亚原子粒子不是标准模型所假设的点状物体,而是微小的弦。这些弦以不同的频率振动,每种不同的振动都会产生不同的粒子。弦理论是万物理论 (ToE) 最有希望的候选理论之一。它提出亚原子粒子是微小的弦,在我们看来它们就像点一样。尽管如此,尽管有这样的理解,仍有相当多的研究人员,包括 Seth Lloyd [1]、Stephen Wolfram [2]、Carlos Gershenson [3] 和 Michael Egnor [4],提出信息是宇宙最基本的组成部分。宇宙由比特组成的观点正在科学界逐渐形成。比特是二进制数字的首字母缩写,是计算机中最小的数据单位。一个比特只有一个二进制值:零或一;或者说是信息的量子比特。量子比特代表量子比特。在量子计算中,这是量子信息的基本单位,是经典二进制比特的量子版本,物理上是用双态设备实现的,正如 Andrei Khrennikov [5] 正确指出的那样。在
供应商。在这种情况下,买方对下层供应商的选择和管理的采购决策保持了一定程度的控制(Choi&Linton,2011; Kay大,2013年)。在这种方法中,考虑到对低层供应商的控制,买方将需要在材料清单中分别分析每个外包产品的组件,并确定其需要保留哪种组件的采购来保留控制。有关多层供应链管理的文献强调了管理较低层供应链的重要性,产品质量,供应风险,创新和可持续性(Choi&Linton,2011; Mena等,2013; Wilhelm et al。,2016)。这种不断增长的文献还提出了在多个供应链中发挥影响的不同机制(Choi,2023; Koberg&Longoni,2019; Tachizawa&Wong&Wong,2014; Villena,2019)。尽管如此,就存在开发一个更简单,更具凝聚力的框架的机会。我们通过建立交易成本经济学(TCE)及其扩展,这是通过功能观点所构成的(例如Argyres&Zenger,2012; Jain&Thietart,2014; Ketokivi&Mahoney,2020年)。但是,现有的TCE工作并未明确考虑交易的多层性质以及直接交易和间接交易之间的固有相互依赖性(Chae等,2019)。Williamson(1985)对交易的认同 - 作为“基本分析的基本单位”,交易 - 商品,服务或资产之间的交换激发了关于公司层面外包决策的大型和有见地的文献。尽管如此,由于任何给定的转移仅在长长的交易链中仅是一个链接(Yan等,2015),因此我们通过垂直分解沿供应链的传输来沿另一个方向发展该理论。通过断言TCE核心的交易包括一系列交织在一起的直接和间接交易,每个交易都需要一个单独但不是独立的治理决策,本研究旨在将有关供应链级交易的治理决策理论化。这项研究的理论框架在直接和间接交易的结论中区分了资产特异性和绩效歧义。因此,在这篇概念上的文章中,我们将TCE和多层供应链管理文献中的见解整合在一起,以回答以下研究问题:如何将TCE的关键前提扩展和修改为多层供应链的背景?将TCE扩展到多层供应链的上下文可以通过使他们能够应用结构化的决策过程来剖析和浏览多层供应链,从而为买家提供独特的实际利益。
功能导致安全性提高,示例是无与伦比的客户服务器通信,盲云计算和安全的多方计算[11,23,33]。分布对于扩展量子计算的扩展也至关重要,超出了允许单个量子的计算机到量子簇的能力[17]。Quantun网络中两个节点之间的通信基本单位是分布式的钟形对或EPR对1 - 一对Quantum位(Qubit s)(Qubit s),一个在每个节点上,它们都是纠缠的。纠缠量子的相关性与经典信息所能实现的更强相关性。作为纠缠是从根本上量子属性的,量子网络必须在量子硬件的范围内运行,其中之一是腐蚀性 - 随着时间的推移,量子状态质量的快速降解。的变形和引入噪声和损失的其他因素代表着像古典网络一样,以存储和前向的精神实现长途量子通信的主要障碍。所有这些因素都将Bell对的端到端分布(是核心量子网络服务)变成了一个需要大量运行时协调的状态和分布式任务。此外,它包括具有本质上很高失败概率的步骤(例如,分离或初始纠缠产生)。对分布式协调,状态性和易于原始操作的需求都有助于量子网络协议的复杂行为 - 远程节点中贝尔对的端到端分布的分布式程序[12,18]。量子网络中资源的稀缺性(例如,内存和通信量子s)提示了在并行执行的量子网络协议之间进行密集的资源共享,更加加剧了复杂性。相同的资源稀缺性和并行操作要求对网络的行为进行正式推理,启用协议优化,有效地汇编对硬件,以及多个协议的安全共存,除了验证单个协议的正确性(例如,铃基对在右NODES中确实正在生成)。量子网络已经需要紧密的协调,因此自然地适合于逻辑集中的体系结构,类似于软件定义的网络(SDN),从而允许对全局协议行为进行推理。我们的目标是开发迎合全球行为分析所需的形式主义。为此,我们从Netkat [1]中汲取灵感,概述了我们对可以使用的语言和逻辑的愿景,
TCEM 路线图:SI 的基础、基本测试和量子测量 EMPIR 支柱:开发和服务于与计量相关的基础科学 触发因素:未来量子技术的发展和基础科学的开发需要新的(基于量子的)计量学。新科学将为计量学创造新的机会。当今的纳米技术可以访问量子效应控制设备功能的维度。这一发展创造了利用量子效应开发技术并实现新功能范式的机会,例如信息和通信技术中的量子密钥分发。与此同时,新的量子现象正在以越来越快的速度被发现,这拓宽了量子技术的基础。由于任何成功的工程工作都依赖于可靠的测量,因此需要新的基于量子的计量学来推进量子技术并利用基础科学的成果。计量学本身应基于不受时间和空间影响的通用标准。为此,SI 基本单位应与自然界的基本常数相联系。这种联系通过量子效应实现,可提供前所未有的准确性。为了进一步提高测量的灵敏度和准确性,基础科学将提供克服噪声限制和降低测量侵入性的策略。目标 1.根据 CIPM 建议实际实现 SI 单位的新定义 该目标侧重于实际实现千克、开尔文和安培的新定义,它们将分别与普朗克常数、玻尔兹曼常数和基本电荷相联系 1 。瓦特天平允许将质量追溯到普朗克常数。测量包括两个步骤。在称重阶段,质量上的重力与磁场中载流线圈上的磁力相平衡。在移动阶段,当同一线圈穿过磁场时,测量线圈中感应的电压。使用约瑟夫森和量子霍尔效应确定电压和电流。在理想情况下,磁场在两个阶段保持稳定,运动得到完美控制,设备的任何热漂移都可以忽略不计。改进的瓦特平衡实验将以更准确的方式解释与理想情况的任何偏差。然而,此外,更实用的设计将定期生成将质量与普朗克常数联系起来的数据。脉冲驱动的约瑟夫森电压标准提供基于量子的可编程电压瞬变,带宽为数十 kHz。它们可用于生成量子噪声测温的噪声信号,以实现基于玻尔兹曼常数的新定义的开尔文。安培与基于量子的单位系统中的基本电荷相关。一个概念上简单的实际实现是单电子电流源,它在固定驱动频率的每个周期产生整数个基本电荷。基于半导体和超导体技术,有前景的设备概念已经得到展示。
标题单击磷脂合成的化学,以研究与EPR和Cryo-Em方法研究脂质 - 蛋白质的相互作用,支持者Gabriele Giachin Research Group研究小组生物分类结构联系网络:电子邮件:Gabriele.giachin.giachin@unipd.it@unipd.it copropont.it Marco Bortolus Research Group epr SpectReprspross Eprsprspross epr Spect eprsproseps epr spect epr spect eprsprops epr spect eprsproppopy eprsproppopy Web网络https://wwwdisc.chimica.unipd.it/eprlab/?page_id=111电子邮件:marco.bortolus@unipd.it Internationalsectment PI. Sebastian Glatt Institute Malopolska生物技术中心生物技术中心,Jagiellonian University,Jagiellonian University,Countrant Countrant,Countrand of Countrand of Countrand,Poland sectuds#3)生物分子的神秘类别。虽然脂质众所周知是膜结构和储能的基本单位,但它们也可以充当执行变构功能和信号传导的化学使者,并且是蛋白质稳定性和折叠的结构元素。解密不同脂质物种的确切作用和生物学相互作用已被证明难以捉摸。脂质很难研究的原因之一是相对缺乏既缺乏质疑动态并在结构层面上可视化它们的技术。在过去的几十年中,随着化学和合成生物学和新型化学技术的强大工具的研究,基于脂质的探针已变得越来越普遍,用于研究体外和体内脂质。脂质组学的应用包括,例如,了解脂质生物合成,贩运和信号的基本细胞生物学,但也发展了癌症药物递送系统。在细胞中,膜中的精确而复杂的磷脂组成对于线粒体功能至关重要。线粒体是细胞的“动力”,磷脂可能会影响包括呼吸链超复合物在内的蛋白质复合物的活性,生物发生和稳定性。尤其是,几种磷脂分子与复合物I(NADH:泛氨基氧化还原酶)交织在一起,这是呼吸链的入口点,是我们细胞的最大膜相关酶(1 MDA)。复合物I的功能障碍与儿童相关的遗传疾病和成人神经退行性综合症有关。脂质可以调节复合物活性,而不是其在维持线粒体膜完整性中的作用。需要进一步研究脂质如何调节CI组装或功能。脂质复合I相互作用及其功能含义的机制仍不清楚:通过合成不同的生物模拟脂质,我们计划在多技术方法中剖析不同脂质与复杂I的相互作用。在这种情况下,PHD项目“单击化学以合成磷脂的合成来研究脂质 - 蛋白与EPR和Cryo-EM方法的相互作用”将着重于研究分子识别机制,从而调节分子识别机制,从而调节伴侣磷脂与天然复合物之间的相互作用。