头脑中,现代物理学家尚未对大自然的内在盒子进行调查。精神尚未纳入标准模型。思维只能由参与式科学研究。搜索了宇宙的基本构建块,即大量的现实一部分(图1),我们还研究了现实的思维一部分,最后假设了两个具有思想和质量现实的基本粒子。现在,我们讨论了如何进一步研究思维,以了解其结构和功能。原子遗传学是科学的分支,我们研究了宇宙的基本相互作用,即原子转录和翻译。新词是为了理解现实的一部分心理科学的创造。Mind Realial已被“ I”视为不同的面孔,大约是5000年前,回到了Mahabharata的Arjuna。就像通过字母了解任何语言一样。这些是(不同的面孔)心理现实字母。一个思想现实具有一个脸部身份,第二个思想现实具有第二个面孔身份等等。面部表达代表智力的现象,不同的面部代表了携带特性的不同类型的特性。睁开眼睛意味着属性被激活,而近眼则意味着属性被灭活。尽管有意识的属性,他们也知道如何不仅进行宇宙的起源,而且还知道如何创建两个不同的宇宙,即下一个创作可能与此创建不同。总的来说,它是宇宙的自动系统。具有良好特性的思维现实具有devtas的身份(两侧的前五个面孔)和那些属于不良特性的思维现实具有恶魔的身份(两侧的最后四个面孔)。这些被称为代码PCP或Messenger原子基因。中央面是CCP或思想脚本,其中所有宇宙的思想都被储存。它是宇宙所有信息的数据库,它是抗思想颗粒的身份,因为宇宙的所有信息的数据都被存储为抗思维粒子。是时间思维(生物钟)一直表达此思想脚本(CCP)的不同思想。在极端和右侧漂浮在火炉中的又有四个面(黑体)是CP(翻译原子基因)。转换消息并实现并做出相应反应。休息图是由全能的B.B.B.的不同想法创建不同个人和自然的(太阳,月亮和蛇以及手上和身体上的其他图片)。整个图片在11/10和11中都在Geeta中进行了解释。无论在这个宇宙中所创造的是什么都不是我们的思想,而是全能的B.B.B(Yang B.B.B.B.B.B.B.B.B.B.B.B. div>)或雄性B.B.B作为宇宙最高中心的工作。 )在创造和破坏宇宙周期的主导地位。(图9.1)
例如本文研究的量子相变,我们的格模型必须包含大量的位点 L ≫ 1,因此该张量积的因子数量也是 L 。量子计算机为解决这些大型 Fock 空间提供了一种令人鼓舞的方法,因为它们本质上是以量子力学的方式运行的。事实上,目前人们正在大力努力在量子硬件上模拟相对论量子场论。一类特别重要的问题是规范场论的模拟,因为它们在描述基本粒子物理学中起着至关重要的作用。这些理论包含玻色子自由度,因此必须解决相应的无限局部希尔伯特空间。在[1-5]中可以找到一些针对此类问题的理论算法建议,在[6-9]中进行了实际的硬件实现。不幸的是,我们目前可用的设备不仅受到量子比特数量的限制,更重要的是受到量子计算机固有的高噪声水平的限制。虽然利用量子纠错 (QEC) [ 10 – 12 ] 的容错量子计算机将来可能会被证明是可靠的,但目前还无法在近期的量子设备(称为噪声中尺度量子 (NISQ) 硬件)上实现 QEC。根据我们当前的现实,有必要找出能够让我们从现有技术中提取有用信息的技术。例如,可以应用不同形式的“错误缓解”技术来对抗噪声。这些技术目前正在研究中,已经设计出几种方法来解决量子计算机中一些最常见的重大错误源,包括读出(RO)误差[13-16],也称为测量误差,以及由两量子比特门(如受控非(CNOT)门)引起的退相干[17-19]。更直接的解决方案是实现混合量子-经典算法,从而将量子方面降低到适当平衡其优缺点的水平。另一方面,我们将看到存在这样一种情况,其中哈密顿量的基态是可分解的,用于计算量子相变的经典和量子算法都受益于由此产生的简化。经典地,希尔伯特空间的张量积不再是问题,因为这个问题可以在本地解决。在量子方面,纠缠门的数量以及相关耦合的范围都大大减少。这使得量子电路实际上可以在当今的硬件上实现,即使对于较大的晶格尺寸 L 也是如此。在玻色子场论的情况下,还必须考虑无限局部希尔伯特。虽然我们在调用基于量子比特的架构时总是可以截断这个希尔伯特空间,该架构根据离散变量 (DV) 量子计算运行,用玻色子本身来模拟这些玻色子模式可能更自然。这是在连续变量 (CV) 量子计算中实现的。除了能够访问整个希尔伯特空间外,CV 量子计算机还可以利用更耐退相干的光学元件和状态,并可以使用现有技术有效操纵 [20]。与目前的量子比特设备(如超导芯片或离子阱量子计算机)不同,这种设备未来也可以在室温下通过实验实现 [21]。然而,通用量子计算所需的非高斯门的实现目前尚无定论。
奇点在基础物理学的最佳理论中占有重要地位:量子场论(QFT)是粒子物理学标准模型的框架,描述了所有基本粒子和力,而广义相对论(GR)将引力描述为时空的曲率。这些奇点有多种类型,引发了人们对它们对这些理论的地位和未来理论发展所暗示的不同诊断。然而,至少其中一些被标准解释为促使人们寻找一种更基本的理论:量子引力(QG)。此外,这些奇点在广义相对论和量子场论中的出现通常被认为表明了量子引力的某些特征,这些特征将使非基础理论中的奇点不再成为问题;也就是说,人们期望新理论将解决或消除特定的奇点,并解释它们在当前理论中的出现。因此,奇点通常不仅被视为寻找新理论的动机,而且还为该理论的形式提供了宝贵的见解。鉴于缺乏可用于辅助其发展的经验动机、指导原则和约束,这一点对于寻找量子引力场至关重要。鉴于奇点的重要性和潜在价值,值得更彻底地研究奇点在广义相对论和量子场论中的意义,以了解它们对寻找量子引力场有何启示。特别有趣的是,对比这些理论对不同奇点的不同态度,并探究对量子引力场的推测含义是否有充分的动机。这是本文的目的。我们首先考虑广义相对论中的两种时空奇点:测地线不完备性(§2.1)和曲率奇点(§2.2)。关于广义相对论中这些奇点的意义,物理学界和哲学界的主流态度已经存在分歧。在物理学中,时空奇点通常被认为代表广义相对论的“崩溃”,因而指出需要量子广义相对论。我们在哲学中发现了相反的态度,因为一些著名文献试图明确广义相对论“崩溃”的意义,却找不到任何可以指责该理论不完备的答案。我们概述了一些论据,说明为什么每一种类型的奇点都可能被认为是有问题的,从而需要加以解决。特别是,§2.3 提出了一个论据,说明曲率奇点如何可能被认为是广义相对论“崩溃”的信号,我们认为这在哲学文献中一直被低估了。然后,我们考虑 QFT 中的两种奇点:紫外发散,通常被认为源于使用微扰理论(§3.1);以及朗道极点,紫外发散,通常被认为不是源于使用微扰理论(§3.2)。接下来(§3.3),我们考虑在量子场论的框架下以微扰方式处理广义相对论中的发散(即与爱因斯坦-希尔伯特作用的不可重正化相关的发散),以及渐近安全场景提出的潜在解决方案。在§3.4中,我们发现了对量子场论奇点的四种可能立场。这四种立场是当前理论中对奇点的四种更一般态度的案例。在§4中,我们概述了对奇点的四种态度,这主要基于对物理学文献的调查。虽然似乎普遍一致认为至少一些奇点必须或将会被重正化,但这并不意味着我们对奇点的态度是绝对的。
1 欧洲核子研究中心 (CERN),CH-1211 日内瓦,瑞士 2 CQTA,德国电子同步加速器 DESY,Platanenallee 6,15738 Zeuthen,德国 3 塞浦路斯研究所基于计算的科学技术研究中心,20,Constantinou Kavafi str.,2121 尼科西亚,塞浦路斯 4 IBM Quantum,IBM Research – 苏黎世,8803 R¨uschlikon,瑞士 5 塞浦路斯大学物理系,PO Box 20537,1678 尼科西亚,塞浦路斯 6 IBM Quantum,IBM Research - 1101 Kitchawan Rd,Yorktown Heights,NY,美国 7 LBNL 物理部门 - M/S 50A5104 1 Cyclotroner Rd Berkeley,CA,美国 8 德国电子同步加速器 DESY,Notkestrasse 85, 22607 汉堡,德国 9 亚琛工业大学,Templergraben 55, 52062 亚琛,德国 10 TIF 实验室,Dipartimento di Fisica,米兰大学和 INFN Sezione di Milano,意大利米兰 11 柏林洪堡大学物理学研究所,牛顿海峡15,12489 柏林,德国 12 ⟨ aQa L ⟩ 应用量子算法,莱顿,荷兰 13 橡树岭国家实验室物理分部,橡树岭,田纳西州,37831,美国 14 奥维耶多大学科学学院计算机科学系,33007,阿斯图里亚斯,西班牙 15 莱布尼茨汉诺威大学理论物理研究所,30167 汉诺威,德国 16 德国联邦物理技术研究院,38116 不伦瑞克,德国 17 跨学科研究领域“物质构建模块和基本相互作用”(TRA Matter)和亥姆霍兹辐射与核物理研究所(HISKP),波恩大学,Nußallee 14-16,53115 波恩,德国 18 大学理论物理研究所因斯布鲁克大学,6020 因斯布鲁克,奥地利 19 奥地利科学院量子光学与量子信息研究所,6020 因斯布鲁克,奥地利 20 德国慕尼黑大学物理系和阿诺德索末菲理论物理中心 21 德国慕尼黑量子科学与技术中心 22 洛桑联邦理工学院(EPFL)物理研究所,CH-1015 洛桑,瑞士 23 巴黎萨克雷大学,CNRS/IN2P3,IJCLab,91405 奥赛,法国 24 约克大学物理与天文系,加拿大安大略省多伦多,M3J 1P3 25 帕多瓦大学物理与天文系,V. Marzolo 8, I-35131 帕多瓦,意大利 26 INFN - Sezione di Padova,Via Marzolo 8,35131 帕多瓦,意大利 27 Nikhef – 国家亚原子物理研究所,科学园 105,1098 XG 阿姆斯特丹,荷兰 28 马斯特里赫特大学引力波与基础物理系,6200 MD 马斯特里赫特,荷兰 29 东京大学国际基本粒子物理中心 (ICEPP),7-3-1 本乡,文京区,东京 113-0033,日本 30 IBM Quantum,IBM 德国研究与开发有限公司 - Schoenaicher Str. 220,71032 Boeblingen,德国 31 巴斯克地区大学 UPV/EHU 物理化学系,Box 644,48080 毕尔巴鄂,西班牙 32 多诺斯蒂亚国际物理中心,20018 多诺斯蒂亚-圣塞瓦斯蒂安,西班牙 33 EHU 量子中心,巴斯克大学 UPV/EHU,PO Box 644,48080 毕尔巴鄂,西班牙 34 IKERBASQUE,巴斯克科学基金会,Plaza Euskadi 5,48009 毕尔巴鄂,西班牙 35 特伦托大学物理系,via Sommarive 14, I–38123, Povo, 特伦托,意大利 36 INFN-TIFPA 特伦托基础物理和应用研究所,via Sommarive 14, I–38123,特伦托,意大利 37 Instituto Superior T´ecnico,Dep. F´ısica,葡萄牙里斯本 38 先进材料物理与工程中心 (CeFEMA),Instituto Superior T´enico,葡萄牙里斯本, 39 材料与新兴技术物理实验室 (LaPMET),葡萄牙 40 费米国家加速器实验室,Kirk and, Pine St, Batavia, IL 60510, USA 41 Instituut-Lorentz, Universiteit莱顿, PO Box 9506, 2300 RA Leiden, 荷兰
物理定律被蚀刻到对称的画布上,定义了动态系统中的不变模式。但是,当对称性破碎时,基本定律也是如此,通常会导致戏剧性的转变。大爆炸是一个很好的例子,在该例子中,高度对称的状态被称为“假真空”,突然过渡到了一个较低的对称性之一,释放了一种通货膨胀的级联,该级联伴随着我们的宇宙。在早期的宇宙中,极端的热量和能量导致所有力融合到一个实体中 - 由最高对称性的统一拉格朗日描述,但理论上的物理学家完全掌握了。随着宇宙的扩展和冷却,这种对称性被打破,将统一的力分成两个不同的组(重力和电核)。随后的冷却导致对称性进一步崩溃,随着电核力量分为强大的核力量和电能力量,标准模型的Lagrangian失去了更多的对称性。最终,在大爆炸之后的一秒钟仅一秒钟,宇宙就足够冷却了,以使统一的电子周力粉碎到电磁力和弱核力量中。在每个阶段,都会发生自发对称性破裂,从而导致物理不变,并出现新的行为。物理学家长期以来一直研究了自发对称性破坏的现象,范围从结晶和相变到诸如Yoichiro Nambu提出的下原子模型等例子,他们在2008年获得了这一概念的诺贝尔物理学奖。新的平衡位置随着箍旋转的速度而出现。结晶发生时,当温度降低时,具有高平均局部对称性的分子的流体会突然过渡,从而在相对位置施加了较低对称的限制并导致有序的晶体结构。即使是固体晶体也可以经历相变,因为一个对称性比另一种对称性在能量上更有利,从而导致其结构变化。在力学中,用参数缓慢进化的潜在函数可以从一个对称开始,并过渡到另一个较低的对称性,可能导致由该功能控制的机械系统的行为不连续变化。在复杂的系统和混乱理论中,当某些参数不断变化时,行为突然的转移很常见,导致分叉 - 对控制参数的持续变化而发生的突然变化。分叉以各种形式出现,每个形式都带有描述性名称,例如干草叉,倍增,霍普夫和折叠分叉。干草叉分叉是一个模范的情况,随着参数的连续变化(水平轴),稳定的固定点变得不稳定,从而产生了两个新的稳定固定点,同时 - 类似于三个衬托的干草叉的形状(超级挑剔的干草店双面双面双面双面双面布置)。可以在简单的机械模型中观察到这种确切的现象,这些模型说明了...当稳定的固定点突然分成多个固定点,一个不稳定,而其他稳定的稳定点时,就会发生对称性破裂。一个简单的机械模型显示此现象是在旋转圆圈上滑动的珠子。该概念也与Coleman-Weinberg的潜力有关。当箍缓慢旋转时,珠子在其底部的平衡周围振荡;但是,随着离心力更快,它会导致珠子摆动到一侧或另一侧,从而产生两个新的稳定固定点。当自旋速率超过临界阈值时,会发生过渡,从而导致自发对称性断裂和干草叉分叉。通过整合角加速度,我们可以获得系统的有效潜力,该系统自然会随着自旋速率的增加而表现出干草叉分叉。当干草叉的底部处于平衡状态时,振荡的固有频率基本平坦,频率为零。以下一定的过渡阈值,扩展加速度表达式揭示了固有频率。随着有效电势会变得更平整,自然振荡频率会降低,直到其在过渡自旋频率下消失为止。要找到这些新频率,请在新的平衡点附近扩展θ,这是一个谐波振荡器,具有角度频率,可以上升以匹配箍的自旋速率。这个过程与经历相变的铁电晶体中的自发对称性破裂相似。自发对称性破坏是一个过程,其中对称态的系统自发过渡到不对称状态。可以在运动方程或拉格朗日表现出对称性的系统中观察到这种现象,但是最低的能量真空溶液没有。当系统塌陷成这些真空溶液之一时,即使整个拉格朗日保留了对称性,对称性也会破坏该真空周围的扰动。自发对称性破坏需要在对称转换(例如翻译或旋转)下保持不变的物理定律。例如,如果在两个不同位置处的测量值具有相同的概率分布,则可观察到的可观察到的转换对称性。在自发的对称性破坏中,这种关系被破坏了,而潜在的物理定律保持对称。相反,当考虑具有不同概率分布的结果时,就会发生显式对称性破坏。缺乏旋转对称性的电场的引入明确打破了旋转对称性。的阶段,例如晶体和磁铁,可以通过自发对称性破坏来描述,但值得注意的例外包括拓扑阶段,例如分数量子霍尔效应。通常,当自发对称性破裂发生时,多个可观察的特性会同时改变。例如,当液体变为固体时,密度,可压缩性,热膨胀系数和比热可能会发生变化。考虑一个向上的圆顶,底部有一个槽。如果将球放在峰值上,则系统在其中心轴旋转下是对称的。但是,球可以通过滚入槽(最低能量点)来自发打破这种对称性。圆顶和球保留了他们的对称性,但是系统不再具有对称性。在理想化的相对论模型中,可以通过说明性标量场理论总结自发对称性破坏。相关的Lagrangian分为动力学和潜在术语:l = ∂μx∂μϕ -V(ϕ)。在这个潜在的术语中,对称性破裂发生。由Jeffrey Goldstone引起的潜力的一个示例由V(ϕ)= -5 | ϕ |^2 + | ϕ |^4给出。对于0和2π之间的任何真实θ,该电位具有由ϕ =√(5/2)E^(iθ)给出的无限数量的最小值(真空状态)。该系统还具有与φ= 0相对应的不稳定真空状态,该状态具有u(1)对称性。系统落入特定的稳定真空状态(构成θ的选择)后,该对称性似乎会丢失或“自发损坏”。该理论的基态打破了对称性,表明无质量的Nambu -Goldstone玻色子,代表了Lagrangian中原始对称性的记忆。[6] [7]对于铁磁材料,空间旋转是不变的。在居里温度下方,磁化点朝着一定方向,使残留的旋转对称性不间断。描述固体的定律在欧几里得组下是不变的,但由于位移和方向顺序参数,自发分解为空间组。一般相对论的洛伦兹对称性被FRW宇宙学模型中的平均4速度场打破了,类似于宇宙微波背景。电动模型在其温度下经历了相变,在该温度下,希格斯字段充当阶参数破坏量规对称性。超导体的集体场ψ可以打破电磁量规对称性。最初在旋转下最初对称的薄塑料杆在屈曲后变为不对称,但通过其旋转模式保留了圆柱对称性的特征,代表Nambu -Goldstone Boson。(1967)。无限平面上的均匀流体层的对称性是由于温度梯度而形成的对流。旋转圆形箍上的珠子最初将保持静止,但是随着旋转速度的增加,它将开始沿特定方向移动,说明了各种物理系统中对称性的自发破坏。在旋转箍的底部,有一个平衡点,重力电势是稳定的。随着箍旋转的速度,这一点变得不稳定,珠子跳到了中心两侧的两个新均衡之一。最初,系统是对称的,但是在传递临界速度之后,珠子沉降到这些新点之一,打破了对称性。两个气球实验表明,当两个气球最初均等地膨胀时,自发对称性破裂,然后随着空气从一个流向另一个气流而放气。在粒子物理学中,量规对称性预测,某些测量值在田间的任何位置都相同。例如,方程可能预测相等的夸克质量。但是,求解这些方程可以产生不同的解决方案,反映出对称性的崩溃。这种现象称为自发对称性破坏(SSB)。早期宇宙的不同区域的对称性可能有所不同,导致拓扑缺陷如域壁和宇宙弦。自发对称性破坏可以通过产生不必要的单脚架来为大统一理论(肠道)带来挑战。手性对称性破坏是SSB影响粒子物理中强相互作用的一个例子。量子染色体动力学的这种特性解释了核子和常见物质中的大部分质量,将光夸克转化为较重的成分。在此过程中,亲尼是近似的Nambu-Goldstone玻色子,其质量比核子的质量轻得多。手性对称性破裂是希格斯机构的原型,这是电动对称性破坏的基础。希格斯机制和自发对称性断裂是错综复杂的,特别是在仪表对称的领域,这实际上代表了描述对称性的冗余。这个概念在理解金属的超导性和粒子物理标准模型中粒子的起源方面起着至关重要的作用。然而,必须注意,由于Elitzur的定理指出,“自发对称性破坏”一词在某种程度上具有误导性。相反,在应用量规固定后,可以以类似于自发对称性破坏的方式破坏全局对称性。区分真实对称性和规格对称性的一个重要结果是,由于量规对称性的自发断裂对量规矢量场的描述,导致无质量的NAMBU-GOLDSTONE玻色子吸收。此过程提供了巨大的矢量场模式,类似于超导体中或在粒子物理学中观察到的媒介模式。在粒子物理的标准模型中,SU(2)×u(1)与电脉力相关的su(2)×u(1)仪表对称性的自发对称性破坏会为各种粒子产生质量,并区分电磁和弱力和弱力。W和Z玻色子是介导弱相互作用的基本颗粒,而光子介导电磁相互作用。在100 GEV以上的能量下,所有这些颗粒的行为都类似。然而,根据温伯格 - 萨拉姆理论,在较低的能量下,这种对称性被损坏,因此光子和巨大的W和z玻璃体出现。此外,费米子始终如一地发展质量。没有自发的对称性破坏,基本粒子相互作用的标准模型必须存在几个颗粒,但是某些粒子(W和Z玻璃体)然后将被预测是无质量的,与观察到的质量相矛盾。为解决这一点,希格斯机制增强了自发对称性破裂,以使这些颗粒质量质量。这也表明存在一个新粒子Higgs Boson,该粒子在2012年被检测到。金属中的超导性用作Higgs现象的凝结物类似物,其中一组电子对电子对自发打破了与光和电磁相关的U(1)量规对称性。动态对称性破坏(DSB)代表一种自发对称性破坏的一种特殊形式,与其理论描述相比,系统的基态具有降低对称性的特性。全局对称性的动态破坏是由于量子校正而不是在经典树级别而发生的一种自发对称性破坏。然而,动态规格对称性破裂更为复杂,不涉及不稳定的希格斯粒子,而是涉及系统的结合状态,提供了促进相变的不稳定场。物理学家Hill和Lindner发表了研究,该研究通过使用由顶式夸克制成的复合粒子探索了标准希格斯机制的替代方法。这个概念是复合HigGS模型的一部分,其中复合粒子充当希格斯玻色子。动态破裂通常与诸如夸克冷凝物等费米子冷凝物有关,而在超导性中,声子促进了对成对结合的电子,从而导致电磁仪表对称性破坏。大多数阶段可以通过自发的对称性破裂来解释,就像在所有翻译或磁体下都不是在特定方向方向取向的磁体的晶体。其他示例包括列液晶和拓扑排序的状态,例如分数量子厅液体。但是,也已知无法通过自发对称性破裂描述的系统,包括拓扑秩和自旋液体。这些状态保留了初始对称性,但具有不同的特征。铁磁性是自发对称性断裂的主要例子,在一定温度下,能量在磁化倒置下保持不变,但随着外部磁场接近零,能量会破裂。自发对称性阶段的特征是阶参数描述了打破所考虑的对称性的数量。这种崩溃不可避免地伴随着与阶参数的缓慢,长波长波动相关的无间隙nambu-goldstone模式,例如晶体中的声子或磁体中的自旋波。在一维系统中,发生对称性破坏。根据Mermin和Wagner的定理的说法,这些无质量的金石模式在恒定的速度下传播,并在有限温度下被热波动破坏。量子波动防止在零温度下的一维系统中大多数类型的连续对称性破裂,除了其顺序参数保守且没有量子波动的铁磁体。其他远程相互作用系统可能会破坏翻译和旋转对称性。对称的哈密顿量导致无限体积极限的手性构型破坏了镜面对称性。自发对称性破坏需要一个具有多种可能结果的系统,在采样时,它们是整体对称的,但在整体上是对称的,但在采样时会产生特定的不对称状态。这种“隐藏的对称性”具有至关重要的形式后果,并且与金石玻色子有关。在具有对称对称组的理论中,当组的一个元素不同而没有指定哪个成员时,就会发生自发对称性破裂。顺序参数概念是物理理论中的关键,其中对称性下的期望值不变表示有序的相位和断裂的对称性。除非涉及希格斯机制,否则这可能会导致无质量的金石玻色子。在1964年,物理学家Yoichiro Nambu和Makoto Kobayashi因其在亚原子物理学和对称性破坏方面的工作而获得了诺贝尔物理奖的一半。他们的发现揭示了强烈的相互作用如何打破对称结构,从而导致粒子(例如夸克和胶子)的产生。研究论文,例如Chen等。(2010)和Kohlstedt等。(2010)和Kohlstedt等。奖项的另一半因发现CP(指控和平等)对称性在薄弱的互动中被授予Toshihide Maskawa。这一发现对我们对粒子物理学的理解有影响,尤其是与希格斯机制有关。对称性破裂是物理学中的一个基本概念,描述了某些对称性如何在不同的物理系统中丢失或扭曲。它已经在各个领域进行了广泛的研究,包括量子力学,冷凝物质物理学和宇宙学。研究人员探索了对称性破坏了各种机制,例如自催化反应,灾难理论,手性对称性破坏和HIGGS机制。这些理论旨在解释对称性如何在不同的情况下破裂或扭曲,从而阐明了自然的基本定律。近年来,研究人员继续探索对称破坏的概念,并研究了诸如大统一理论,量规重力理论和宇宙弦之类的主题。对对称性破裂的研究仍然是研究的活跃领域,其驱动到其潜力揭示了对宇宙基础结构的新见解的潜力。在包括物理学在内的各个科学社区中,已经对自发对称性破坏的概念进行了广泛的研究。(2007)分别探讨了其对量子纠缠和手性的影响。诺贝尔物理学奖2008颁发给对该领域做出重大贡献的研究人员。史蒂文·温伯格(Steven Weinberg)等学者在诸如Cern Courier等出版物中的意义反映了其重要性。Englert-Brout-Higgs-Guralnik-Hagen-Kibble机制是自发对称性破坏的基本概念,该概念是Guralnik等人最初引入的。该理论已被广泛应用于量规理论,并且是众多研究的主题,包括在《国际现代物理学杂志》中发表的A.自发对称性破坏对我们对宇宙的理解具有深远的影响,其研究仍然是一个积极的研究领域。
